L2 Random Variables

谢润烁 2023/11/14

1 Random Variable Basics

Definition (Random Variable) A random variable is a function $X : \Omega \to \mathbb{R}$ with the property that $\{\omega \in \Omega : X(\omega) \le x\} \in \Sigma$ for each $x \in \mathbb{R}$. Such a function is said to be Σ -measurable.

Definition (Distribution Functions) The distribution function of a random variable X is the function $F : \mathbb{R} \to [0, 1]$ given by $F(x) = \Pr(X \le x)$.

Lemma (Properties of Distribution Functions)

- 1. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$
- 2. if x < y then $F(x) \leq F(y)$
- 3. F is right-continuous, that is, $F(x+h) \to F(x)$ as $h \downarrow 0$.

Note: In order to prove the third property, the theorem of continuity of probability measures is needed.

Definition (Independence of Random Variable) Random variables X and Y are called **independent** if $\{X \le x\}$ and $\{Y \le y\}$ are independent events for all $x, y \in \mathbb{R}$.

1.1 Discrete Random Variable

Definition (Discrete Random Variable) The random variable X is called **discrete** if it takes values in some *countable* subset $\{x_1, x_2, \ldots\}$, only, of \mathbb{R} . The **discrete random variable** X has (**probability**) mass function (**pmf**) $f : \mathbb{R} \to [0, 1]$ given by $f(x) = \Pr(X = x)$.

1.2 Continous Random Variable

Definition (Continuous Random Variable) The random variable X is called **continuous** if its distribution function can be expressed as

$$F(x)=\int_{-\infty}^x f(u)du, x\in \mathbb{R}$$

for some integrable function $f : \mathbb{R} \to [0, \infty)$ called the (**probability**) density function (pdf) of X.

Note that the word 'continuous' is a misnomer when used in this regard: in describing X as continuous, we are referring to a property of its distribution function rather than of the random variable (function) X itself.

1.3 Moment and Deviation

Definition (Expectation) The mean value, or expectation, or expected value of the random variable X with mass function f is defined to be

$$\mathbb{E}(X) = \sum_{x:f(x)>0} xf(x)$$

whenever this sum is absolutely convergent.

Note: $\mathbb{E}(X)$ can be denoted as $\mathbb{E}X$.

Theorem (Linearity of Expectation) if $a, b \in R$ then $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$.

Theorem. If X and Y are independent then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Definition (Variance) The variance of the random variable X with mass function f is defined to be

 $\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}X^2$

Theorem. $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$ for $a \in \mathbb{R}$.

Theorem. X and Y are **independent** and both have finite variances, then

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$

2 Elementary Models

2.1 Discrete Models

2.1.1 Bernoulli Trials

Definition (Bernoulli trials) A random variable X takes values 1 and 0 with probabilities p and 1 - p, respectively. $\mathbb{E}(X) = p$, $\operatorname{Var}(X) = p(1 - p)$.

2.1.2 Binomial Distribution

Definition (Binomial distribution) We perform *n* independent Bernoulli trials X_1, X_2, \ldots, X_n and count the total number of successes $Y = X_1 + X_2 + \cdots + X_n$. The mass function of Y is:

$$f(k)=inom{n}{k}p^k(1-p)^k, k=0,1,2,\dots,n$$

 $\mathbb{E}(Y) = np, \operatorname{Var}(Y) = np(1-p).$

2.1.3 Geometric Distribution

Definition (Geometric distribution) A *geometric* variable X is a random variable with the geometric mass function

$$f(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

for some number p in (0,1). $\mathbb{E}(X) = p^{-1}$, $Var(X) = (1-p)p^{-2}$.

2.1.4 Poisson Distribution

Definition (Poisson distribution) A Poisson variable is a random variable with the Poisson mass function

$$f(k)=rac{\lambda^k}{k!}e^{-\lambda}, k=0,1,\ldots$$

for some $\lambda > 0$. $\mathbb{E}(X) = \lambda$, $\operatorname{Var}(X) = \lambda$.

2.2 Continous Models

2.2.1 Uniform Distribution (Continous)

Definition (Uniform Distribution) The random variable X is uniform on a, b if it has density function f:

$$f(x) = egin{cases} rac{1}{b-a} & ext{if } a < x < b, \ 0 & ext{otherwise}, \end{cases}$$

 $\mathbb{E}(X)=(a+b)/2, \mathrm{Var}(X)=rac{(b-a)^2}{12}.$

2.2.2 Exponential Distribution

Definition (Exponential distribution) The random variable X is *exponential* with parameter $\lambda (> 0)$ if it has density function f:

$$f(x) = \lambda e^{-\lambda x}, ext{for } x \geq 0$$

 $\mathbb{E}(X) = 1/\lambda, \operatorname{Var}(X) = 1/\lambda^2.$

2.2.3 Normal Distribution

The normal (or Gaussian) distribution with two parameters μ and σ^2 has density function f:

$$f(x) = rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}, -\infty < x < \infty$$

 $\mathbb{E}(X) = \mu, \operatorname{Var}(X) = \sigma^2.$

If $\mu = 0$ and $\sigma^2 = 1$ then f(x):

$$f(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2}, -\infty < x < \infty$$

is the density of the *standard* normal distribution.

2.3 Summary

Distribution	Parameter	pmf/pdf	$\mathbb{E}(X)$	$\operatorname{Var}(X)$
Bernoulli	p	$f(k)=p^k(1-p)^{(1-k)}, k=0,1$	p	p(1-p)
Binomial	n,k,p	$f(k)=inom{n}{k}p^k(1-p)^k, k=0,1,2,\dots,n.$	np	np(1-p)
Geometric	p	$f(k) = p(1-p)^{k-1}, k = 1, 2, \ldots$	p^{-1}	$(1-p)p^{-2}$
Poisson	λ	$f(k)=rac{\lambda^k}{k!}e^{-\lambda}, k=0,1,\ldots$	λ	λ
Uniform (continuous)	$a,b\in\mathbb{N}$	$f(x) = egin{cases} rac{1}{b-a} & ext{if } a < x < b, \ 0 & ext{otherwise}, \end{cases}$	$\frac{(a+b)}{2}$	$\frac{(b-a)^2}{12}$
Exponential	λ	$f(x)=\lambda e^{-\lambda x}, x\geq 0$	$1/\lambda$	$1/\lambda^2$
Normal $N(\mu, \sigma)$	μ,σ	$f(x) = rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}, -\infty < x < \infty$	μ	σ^2