Probability and Statistics

Random Variable

谢润烁 Nanjing University， 2023 Fall

Why Random Variable?

- The Ω might be too concrete
- We care about mathematical properties

$$
\Omega \xrightarrow[X / Y / Z / \ldots]{ } \mathbb{R} / \mathbb{N}
$$

What about Random Variable?

- How to describe a random variable?
- $\operatorname{Pr}(X=k)=f(k) ?$
- How to compute/approximate the probability of a certain event?
- $\{X=1\} \cap\{X=3\}$
- $\{a \leq X \leq b\}$
- How to reason about the overall behavior of a random variable?
- Moment and Deviation \rightarrow Concentration of Measure

Basics on Random Variable

Random Variable

- $X: \Omega \rightarrow \mathbb{R}$
- Is every function $f: \Omega \rightarrow \mathbb{R}$ a legal random variable?
- We write $\{a \leq X \leq b\}$
- instead of $\{\omega: a \leq X(\omega) \leq b\}$
- We don't care too much about the concrete Ω when we're studying X

Function of Random Variable

- We can operate on numbers \mathbb{N}
- $1+2$
- We can also operate on function
- $f \circ g$
- Random variable as well
- $Z=f(X, Y)$

How to describe a random variable?

- In discrete case, it is okay to use $\operatorname{Pr}(X=k)$ to describe a random variable
- When things become continuous:
- Uniform distribution on $[0,1]$
- Uniform distribution on $[0,1] \times[0,1]$

Discrete and Continuous Variable

- Discrete: Probability Mass Function (pmf)

$$
\begin{gathered}
f(x)=\operatorname{Pr}(X=x) \\
\operatorname{Pr}(X \leq x)=\sum_{k=-\infty}^{x} f(k), x \in \mathbb{N}
\end{gathered}
$$

- Continuous: Probability Density Function (pdf)

$$
\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f(u) d u, x \in \mathbb{R}
$$

Distribution Function
 Unify the discrete and continuous cases

- Distribution Function
- a.k.a Cumulative Distribution Function (CDF)
- $F(x)=\operatorname{Pr}(X \leq x)$, for $\forall x \in \mathbb{R}$
- Answer: Is every function $f: \Omega \rightarrow \mathbb{R}$ a legal random variable?
- Recall that $\operatorname{Pr}(A)$ is well-defined if and only if $A \in \Sigma$
- X is a random variable if and only if $\forall x \in \mathbb{R} .\{X \leq x\} \in \Sigma$

Distribution Function

Unify the discrete and continuous cases

- aka Cumulative Distribution Function (CDF)
- $F(x)=\operatorname{Pr}(X \leq x)$, for $\forall x \in \mathbb{R}$
- Property
- $F(-\infty)=0$
- $F(+\infty)=1$
- $F(x)$ is right-continuous

Expectation

Aggregate the data

- Discrete case

$$
\mathbb{E}(X)=\sum_{x} x \cdot \operatorname{Pr}(X=x)
$$

- Continuous case

$$
\mathbb{E}(X)=\int_{x} x f(x) d x
$$

Expectation

Linearity of Expectations

- $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$
- No need for independence
- Generally,

$$
\begin{aligned}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right) & =\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right) \\
\mathbb{E}(c X) & =c \mathbb{E}(X)
\end{aligned}
$$

Expectation
 Averaging principle

- It is trivial that:
- $\exists x . x \geq \mathbb{E}(X)$ and $\exists x . x \leq \mathbb{E}(X)$
- Consider a class with average height (expectation) 175cm
- There must be people with height $\leq 175 \mathrm{~cm}$
- There must be people with height $\geq 175 \mathrm{~cm}$
- In probabilistic method
- we use $\mathbb{E}(X)$ to prove some upper bounds and lower bounds of X
- Conditional Expectation can even be used to design algorithms

Variance

How data deviates from the expectation?

- $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\mathbb{E}\left(X^{2}\right)-\mathbb{E} X^{2}$
- Standard Deviation: $\sqrt{\operatorname{Var}(X)}$
- If X and Y are independent

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

- They will be useful later, but not now

Elementary Random Variables

Road Map

Let's explore their distribution, expectation and variance

Discrete

- Bernoulli
- Binomial
- Geometric
- Poisson

Continuous

- Uniform Distribution
- Exponential
- Normal

There will be tons of maths here

Road Map

Let's explore their distribution, expectation and variance

Bernoulli Distribution

a.k.a Bernoulli Trial

. $X= \begin{cases}1 & \text { trial succeeds } \\ 0 & \text { otherwise }\end{cases}$

- $\Omega=\{H, T\}$

Bernoulli Distribution

a.k.a Bernoulli Trial

. $X= \begin{cases}1 & \text { trial succeeds } \\ 0 & \text { otherwise }\end{cases}$
Bernoulli Distribution Graph

- $\operatorname{Pr}(X=1)=p$
- $\operatorname{Pr}(X=0)=1-p$
- $\mathbb{E}(X)=p$
- $\operatorname{Var}(X)=p(1-p)$

THE MATH EXPERT

X ~Bernoulli(p)

Road Map

Let's explore their distribution, expectation and variance

Binomial Distribution

Sum of Independent Bernoulli Distribution

- We don't throw one time; we throw n times
- For example, when $n=3$

$$
\Omega=\{H H H, H H T, H T H, H T T, T T T, T T H, T H T, T T H\}
$$

- How many heads can we get?

Binomial Distribution

Sum of Independent Bernoulli Distribution

- $X \sim B(n, p)$
- $X=X_{1}+X_{2}+\ldots+X_{n}$
- X_{i} : Bernoulli Distribution
- $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d (independent identical distribution)

Binomial Distribution

Sum of Independent Bernoulli Distribution

- $X \sim B(n, p)$

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n
$$

- $\mathbb{E}(X)=n p$
- Proved by definition
- Or by linearity of Expectation (Much simpler)
- $\operatorname{Var}(X)=n p(1-p)$

Binomial Distribution

Sum of Independent Bernoulli Distribution

Road Map

Let's explore their distribution, expectation and variance

Geometric Distribution

Do not stop until I hit it

- You can throw as many times as possible
- But if you get a head, you must stop
- $\Omega=\{H, T H, T T H, T T T H, \ldots\}$

Geometric Distribution

Do not stop until I hit it

$$
\operatorname{Pr}(X=k)=(1-p)^{k-1} p, k=1,2, \ldots
$$

- $\mathbb{E}(X)=\frac{1}{p}$
- $\operatorname{Var}(X)=\frac{(1-p)}{p^{2}}$

Road Map

Let's explore their distribution, expectation and variance

Poisson Distribution

What the hell is this?

$$
\operatorname{Pr}(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}, \lambda>0, k=0,1,2, \ldots
$$

- Consider a Binomial Distribution with $n=37, p=\frac{1}{37}$
- First 3 terms

$$
\text { . }\left(1-\frac{1}{37}\right)^{37},\binom{37}{1}\left(1-\frac{1}{37}\right)^{36} \frac{1}{37},\binom{37}{2}\left(1-\frac{1}{37}\right)^{35}\left(\frac{1}{37}\right)^{2},
$$

Poisson Distribution

What the hell is this?

. $\left(1-\frac{1}{37}\right)^{37},\binom{37}{1}\left(1-\frac{1}{37}\right)^{36} \frac{1}{37},\binom{37}{2}\left(1-\frac{1}{37}\right)^{35}\left(\frac{1}{37}\right)^{2}$,
. $c=\left(1-\frac{1}{37}\right)^{37} \approx 0.363$

- c, $\frac{36}{37} c, \frac{36}{37} \times \frac{1}{2} c$

Poisson Distribution

What the hell is this?

. $c=\left(1-\frac{1}{37}\right)^{37} \approx 0.363$
. $c, \frac{36}{37} c, \frac{36}{37} \times \frac{1}{2} c$
. Approximation: $\left[e^{-1} \approx 0.368 / c\right]$, [1/ $\left.\frac{36}{37}\right]$
. $e^{-1}, e^{-1}, \frac{1}{2} e^{-1}$

Poisson Distribution

Poisson Distribution

$$
\operatorname{Pr}(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}, \lambda>0, k=0,1,2, \ldots
$$

- $\mathbb{E}(X)=\lambda$
- $\operatorname{Var}(X)=\lambda$
- "the Poisson law was at one time under the name of 'the law of small numbers'."
- "Well-kept statistical data such as the number of Prussian cavalry men killed each year by a kick from a horse, or the number of child suicides in Prussia, were cited as typical examples of this remarkable distribution (see [Keynes])"

Road Map

Let's explore their distribution, expectation and variance

Continuous

- Uniform Distribution
- Exponential
- Normal

Uniform Distribution

. $f(x)= \begin{cases}\frac{1}{b-a} & , a \leq x \leq b \\ 0 & \text {,otherwise }\end{cases}$

- $\mathbb{E}(X)=(a+b) / 2$
- $\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$

Road Map

Let's explore their distribution, expectation and variance

Continuous

- Uniform Distribution
- Exponential
- Normal

Exponential Distribution

- $f(x)=\lambda e^{-\lambda x}$, for $x \geq 0$
- $\mathbb{E}(X)=\frac{1}{\lambda}$
- $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$

Exponential Distribution

- Memoryless

$$
\operatorname{Pr}(X>s+t \mid X>s)=\operatorname{Pr}(X>t)
$$

- Useful model for various types of waiting time problems
- telephone calls
- service times
- splitting of radioactive particles
\qquad

Road Map

Let's explore their distribution, expectation and variance

Continuous

- Uniform Distribution
- Exponential
- Normal

Normal Distribution

a.k.a Gaussian Distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}},-\infty<x<\infty
$$

- $\mathbb{E}(X)=\mu$
- $\operatorname{Var}(X)=\sigma^{2}$
- standard/unit Normal Distribution: $\mu=0, \sigma^{2}=1$

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}},-\infty<x<\infty
$$

Normal Distribution

a.k.a Gaussian Distribution

Normal Distribution

a.k.a Gaussian Distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu)^{2}},-\infty<x<\infty
$$

- $\mathbb{E}(X)=\mu$
- $\operatorname{Var}(X)=\sigma^{2}$
- standard/unit Normal Distribution: $\mu=0, \sigma^{2}=1$

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}},-\infty<x<\infty
$$

