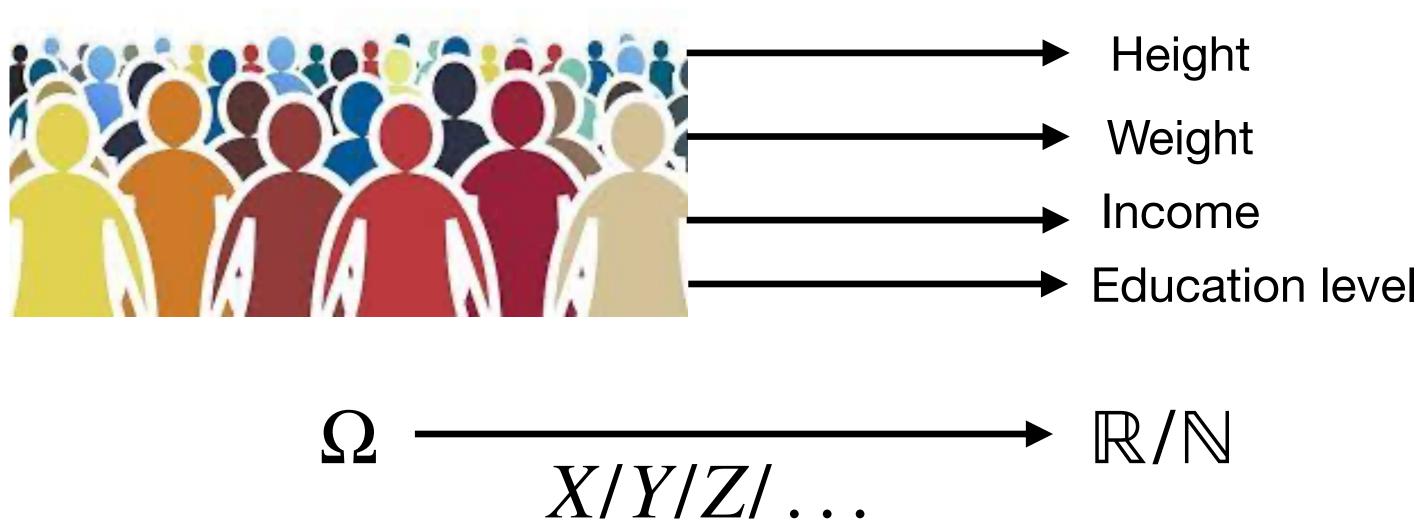
Probability and Statistics Random Variable

谢润烁 Nanjing University, 2023 Fall

Why Random Variable?

- The Ω might be too concrete
- We care about mathematical properties



What about Random Variable?

- How to describe a random variable?
 - $\Pr(X = k) = f(k)$?
- How to compute/approximate the probability of a certain event?
 - $\{X = 1\} \cap \{X = 3\}$
 - $\{a \leq X \leq b\}$
- How to reason about the overall behavior of a random variable?
 - Moment and Deviation \rightarrow Concentration of Measure

Basics on Random Variable

Random Variable

- $X: \Omega \to \mathbb{R}$
 - Is every function $f: \Omega \to \mathbb{R}$ a legal random variable?
- We write $\{a \leq X \leq b\}$
 - instead of $\{\omega : a \leq X(\omega) \leq b\}$

• We don't care too much about the concrete Ω when we're studying X

Function of Random Variable

- We can operate on numbers $\ensuremath{\mathbb{N}}$
 - 1 + 2
- We can also operate on function
 - *f g*
- Random variable as well
 - Z = f(X, Y)

How to describe a random variable?

- When things become continuous:
 - Uniform distribution on [0,1]
 - Uniform distribution on $[0,1] \times [0,1]$

• In discrete case, it is okay to use Pr(X = k) to describe a random variable

Discrete and Continuous Variable

Discrete: Probability Mass Function (pmf)

- $\Pr(X \le x) =$
- Continuous: Probability Density Function (pdf)
 - $\Pr(X \le x) =$

 $f(x) = \Pr(X = x)$

$$\sum_{k=-\infty}^{x} f(k), x \in \mathbb{N}$$

$$\int_{-\infty}^{x} f(u) du, x \in \mathbb{R}$$

Distribution Function Unify the discrete and continuous cases

- Distribution Function
 - a.k.a Cumulative Distribution Function (CDF)
- $F(x) = \Pr(X \le x)$, for $\forall x \in \mathbb{R}$
- Answer: Is every function $f: \Omega \to \mathbb{R}$ a legal random variable?
 - Recall that Pr(A) is well-defined if and only if $A \in \Sigma$
 - X is a random variable if and only if $\forall x \in \mathbb{R}$. $\{X \leq x\} \in \Sigma$

Distribution Function Unify the discrete and continuous cases

- aka Cumulative Distribution Function (CDF)
- $F(x) = \Pr(X \le x)$, for $\forall x \in \mathbb{R}$
- Property
 - $F(-\infty) = 0$
 - $F(+\infty) = 1$
 - F(x) is right-continuous

Expectation Aggregate the data

Discrete case

Continuous case

 $\mathbb{E}(X) = \sum x \cdot \Pr(X = x)$ ${\mathcal X}$

 $\mathbb{E}(X) = \int xf(x)dx$

Expectation **Linearity of Expectations**

- $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$
- No need for independence
- Generally,

i=1

$\mathbb{E}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} \mathbb{E}(X_{i})$ i=1 $\mathbb{E}(cX) = c\mathbb{E}(X)$

Expectation **Averaging principle**

- It is trivial that:
 - $\exists x . x \ge \mathbb{E}(X)$ and $\exists x . x \le \mathbb{E}(X)$
 - Consider a class with average height (expectation) 175cm
 - There must be people with height ≤ 175 cm
 - There must be people with height ≥ 175 cm
- In probabilistic method
 - we use $\mathbb{E}(X)$ to prove some upper bounds and lower bounds of X
- Conditional Expectation can even be used to design algorithms

Variance How data deviates from the expectation?

- $\operatorname{Var}(X) = \mathbb{E}[(X \mathbb{E}X)^2] = \mathbb{E}(X^2) \mathbb{E}X^2$
- Standard Deviation: $\sqrt{Var(X)}$
- If X and Y are independent
- They will be useful later, but not now

Var(X + Y) = Var(X) + Var(Y)

Elementary Random Variables

Road Map Let's explore their distribution, expectation and variance

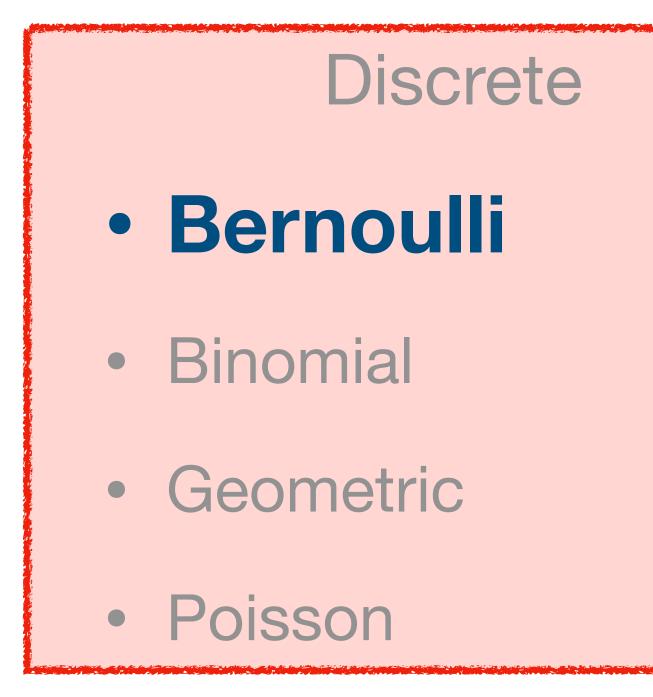
Discrete

- Bernoulli
- Binomial
- Geometric
- Poisson

There will be tons of maths here

- Uniform Distribution
- Exponential
- Normal

Road Map Let's explore their distribution, expectation and variance



- Uniform Distribution
- Exponential
- Normal

Bernoulli Distribution a.k.a Bernoulli Trial

- $X = \begin{cases} 1 & \text{trial succeeds} \\ 0 & \text{otherwise} \end{cases}$
- $\Omega = \{H, T\}$

Bernoulli Distribution a.k.a Bernoulli Trial

•
$$X = \begin{cases} 1 & \text{trial succeeds} \\ 0 & \text{otherwise} \end{cases}$$

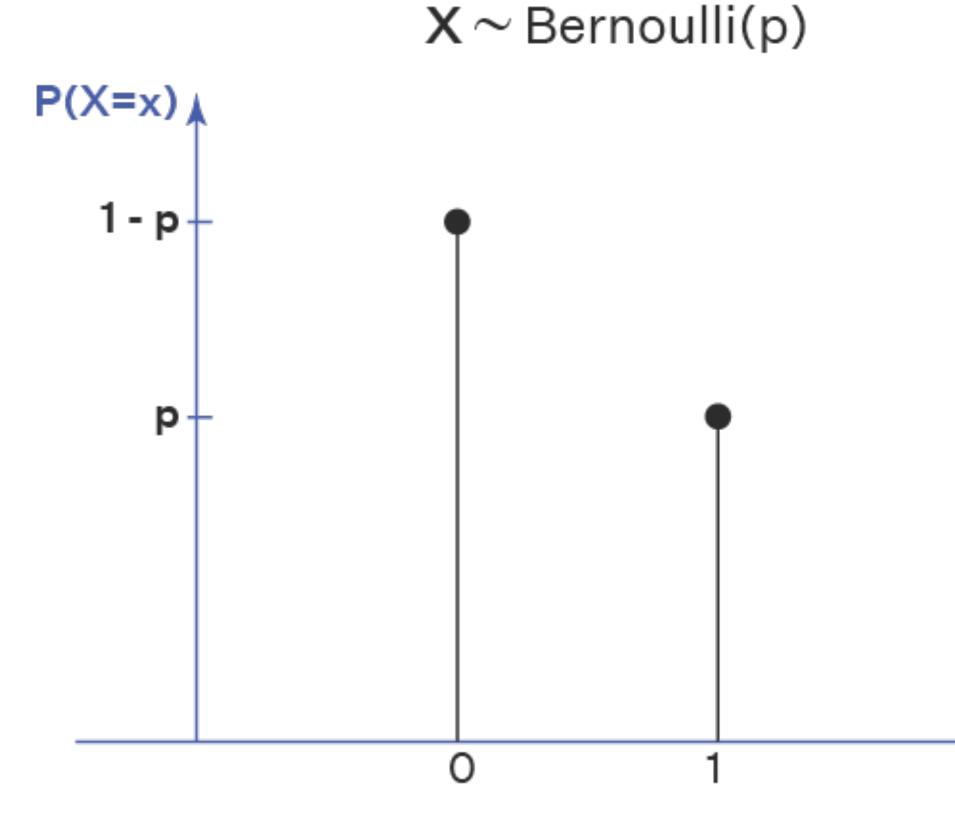
•
$$\Pr(X = 1) = p$$

•
$$\Pr(X = 0) = 1 - p$$

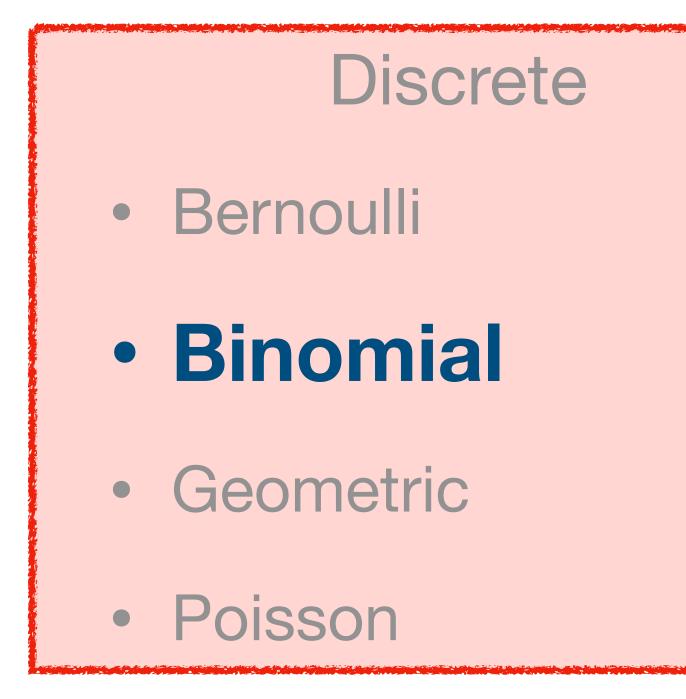
•
$$\mathbb{E}(X) = p$$

•
$$Var(X) = p(1 - p)$$

Bernoulli Distribution Graph



Road Map Let's explore their distribution, expectation and variance



- Uniform Distribution
- Exponential
- Normal

- We don't throw one time; we throw *n* times
- For example, when n = 3

$\Omega = \{HHH, HHT, HTH, HTT, TTT, TTH, THT, TTH\}$

How many heads can we get?

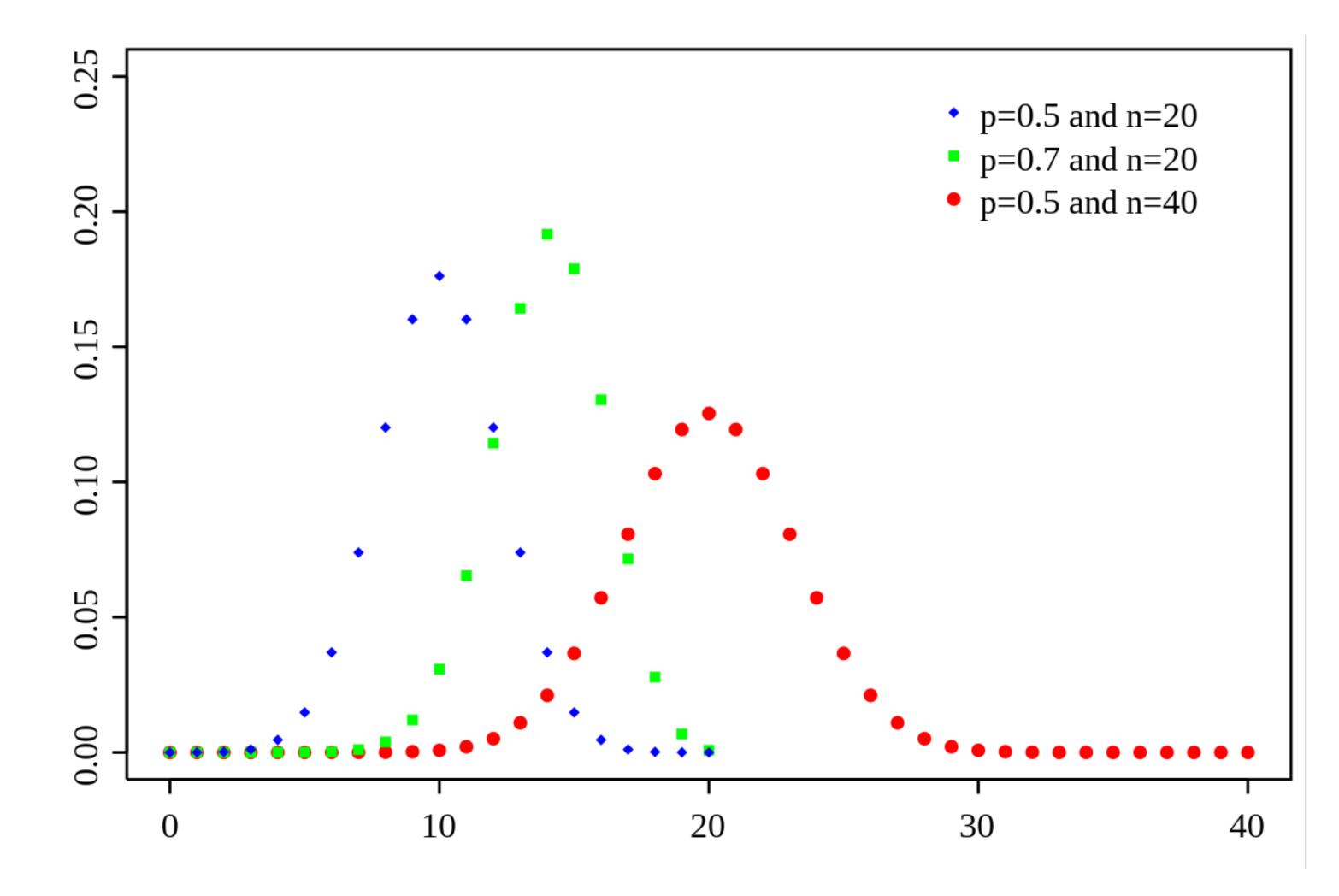
- $X \sim B(n,p)$
 - $X = X_1 + X_2 + \ldots + X_n$
 - X_i : Bernoulli Distribution
 - X_1, X_2, \ldots, X_n are i.i.d (independent identical distribution)

• $X \sim B(n,p)$

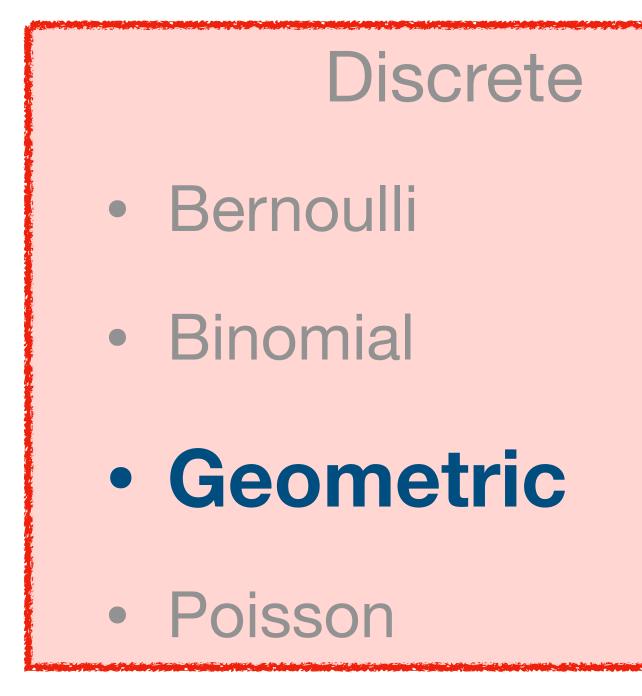
 $\Pr(X=k) = \binom{n}{k} p^k$

- $\mathbb{E}(X) = np$
 - Proved by definition
 - Or by linearity of Expectation (Much simpler)
- Var(X) = np(1 p)

$${}^{k}(1-p)^{n-k}, k=0,1,...,n$$



Road Map Let's explore their distribution, expectation and variance

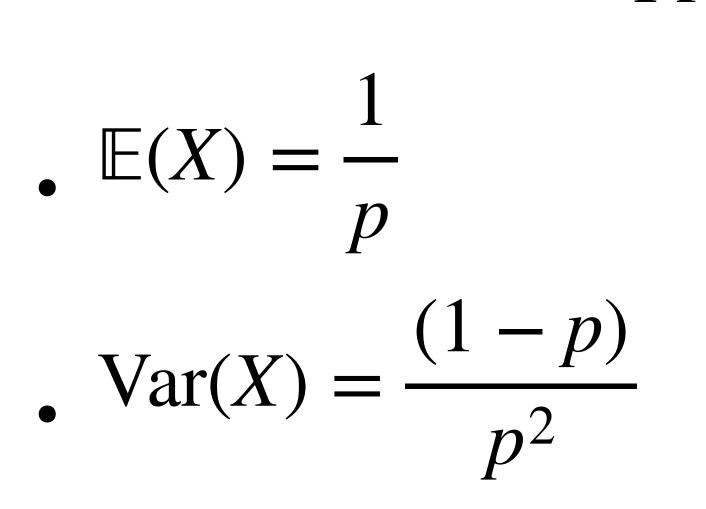


- Uniform Distribution
- Exponential
- Normal

Geometric Distribution Do not stop until I hit it

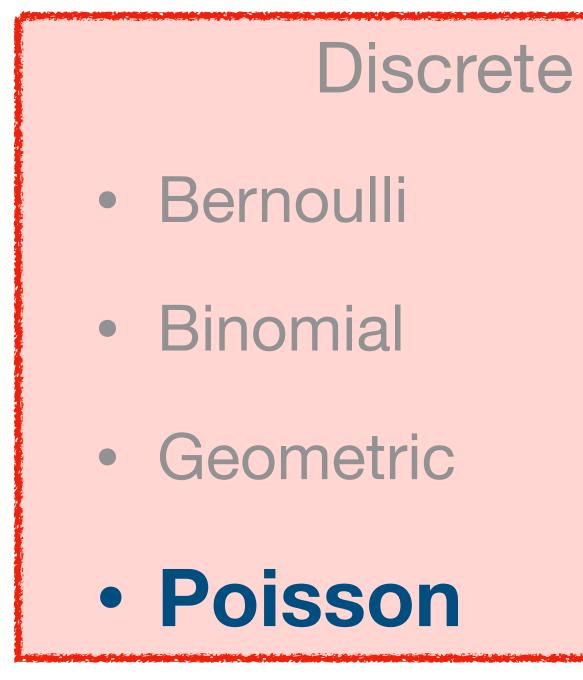
- You can throw as many times as possible
- But if you get a head, you must stop
- $\Omega = \{H, TH, TTH, TTH, \dots\}$

Geometric Distribution Do not stop until I hit it



$Pr(X = k) = (1 - p)^{k-1}p, k = 1, 2, \dots$

Road Map Let's explore their distribution, expectation and variance



- Uniform Distribution
- Exponential
- Normal

Poisson Distribution What the hell is this?

$$Pr(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}, \lambda > 0, k = 0, 1, 2, ...$$

nial Distribution with $n = 37, p = \frac{1}{37}$

٠

- Consider a Binomial Distribution with
 - First 3 terms

•
$$(1 - \frac{1}{37})^{37}, {\binom{37}{1}}(1 - \frac{1}{37})^{36}\frac{1}{37}, {\binom{37}{2}}(1 - \frac{1}{37})^{35}(\frac{1}{37})^2,$$

Poisson Distribution What the hell is this?

•
$$(1 - \frac{1}{37})^{37}$$
, $\binom{37}{1}(1 - \frac{1}{37})^{36}\frac{1}{3}$
• $c = (1 - \frac{1}{37})^{37} \approx 0.363$
• $c, \frac{36}{37}c, \frac{36}{37} \times \frac{1}{2}c$

 $\frac{1}{37}, \binom{37}{2}(1-\frac{1}{37})^{35}(\frac{1}{37})^2,$

Poisson Distribution What the hell is this?

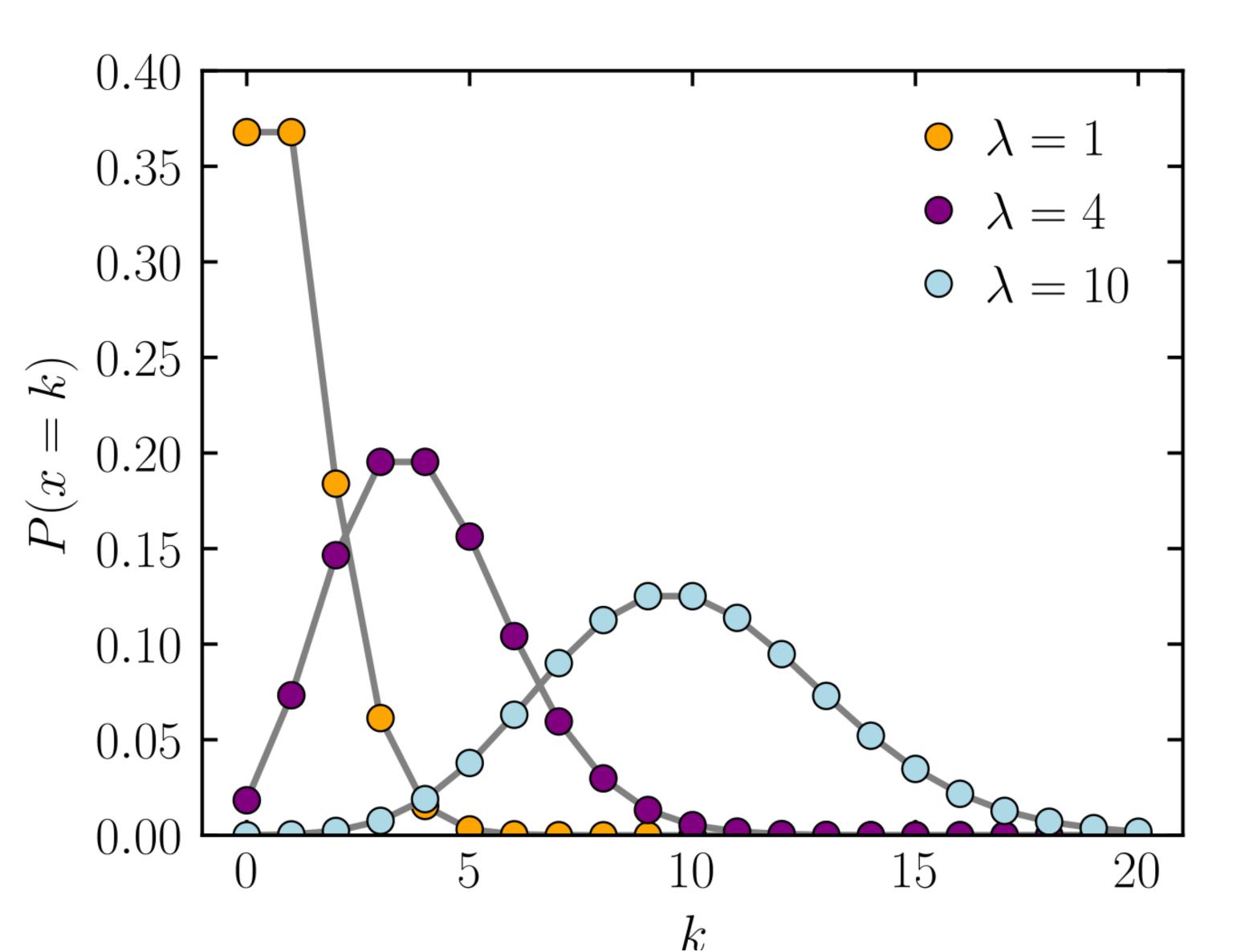
•
$$c = (1 - \frac{1}{37})^{37} \approx 0.363$$

• $c, \frac{36}{37}c, \frac{36}{37} \times \frac{1}{2}c$

• Approximation: $[e^{-1} \approx 0.368 / c], [1 / \frac{36}{37}]$

•
$$e^{-1}, e^{-1}, \frac{1}{2}e^{-1}$$

Poisson Distribution



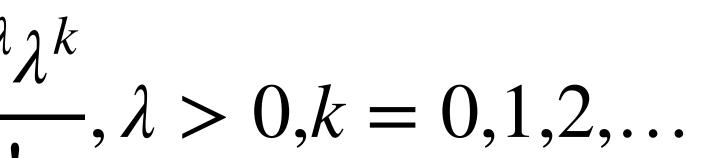
Poisson Distribution

$$\Pr(X = k) = \frac{e^{-\lambda}}{k!}$$

• $\mathbb{E}(X) = \lambda$

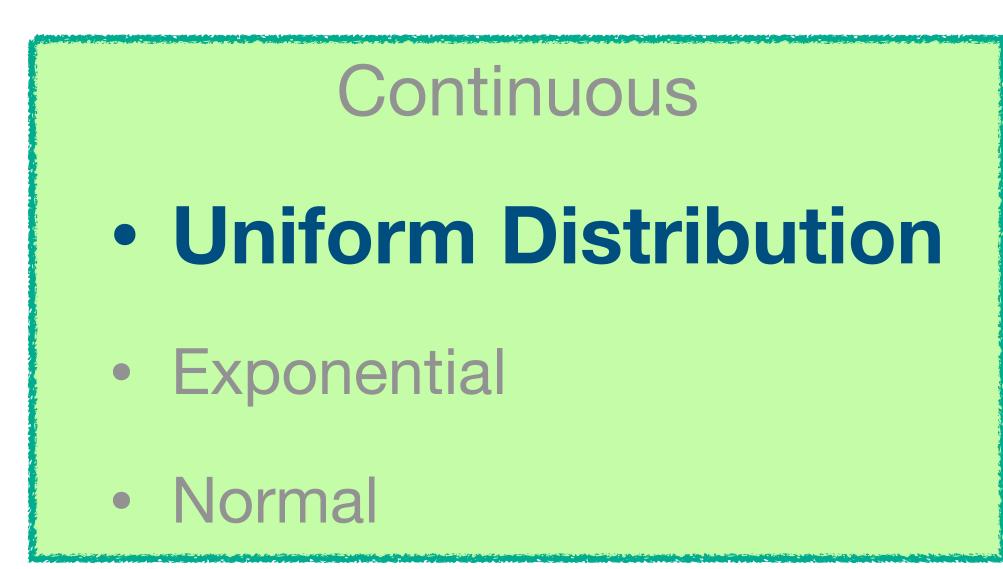
•
$$\operatorname{Var}(X) = \lambda$$

- "the Poisson law was at one time under the name of 'the law of small numbers'."



 "Well-kept statistical data such as the number of Prussian cavalry men killed each year by a kick from a horse, or the number of child suicides in Prussia, were cited as typical examples of this remarkable distribution (see [Keynes])"

Road Map Let's explore their distribution, expectation and variance

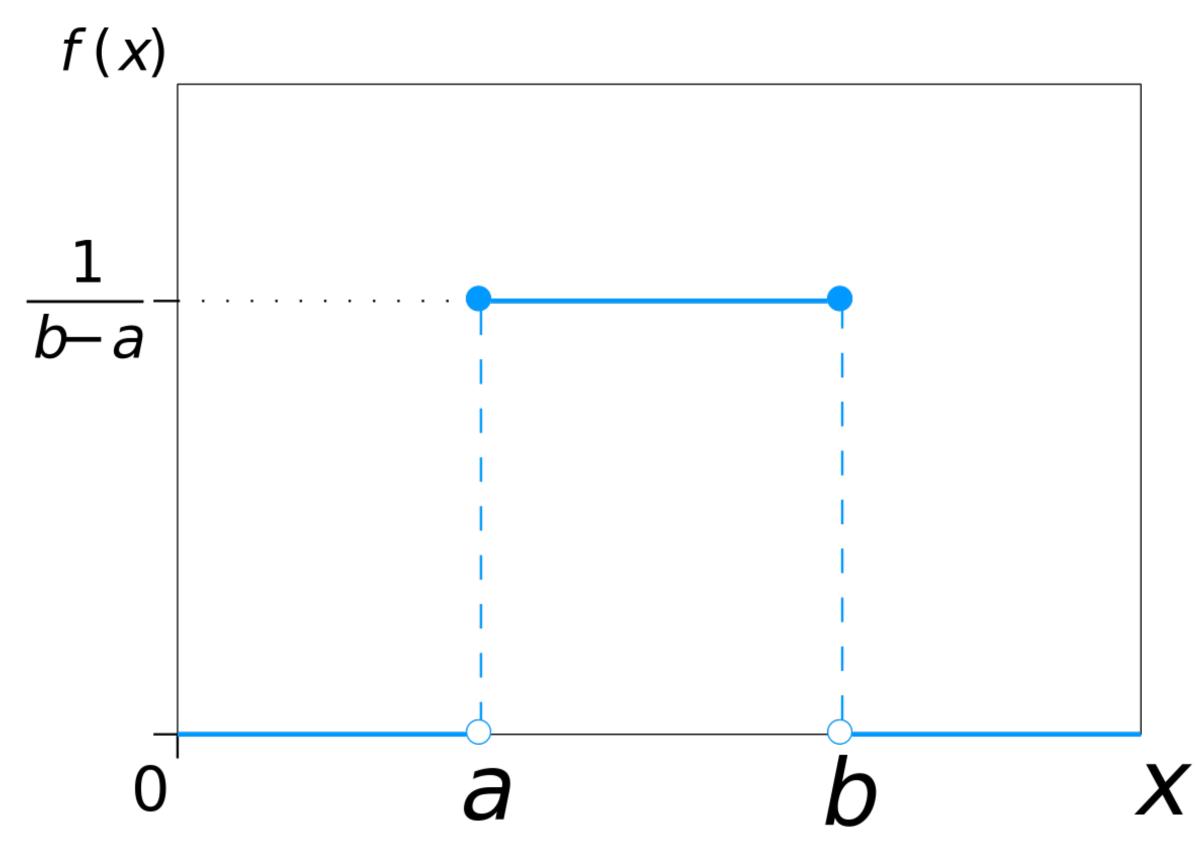


Uniform Distribution

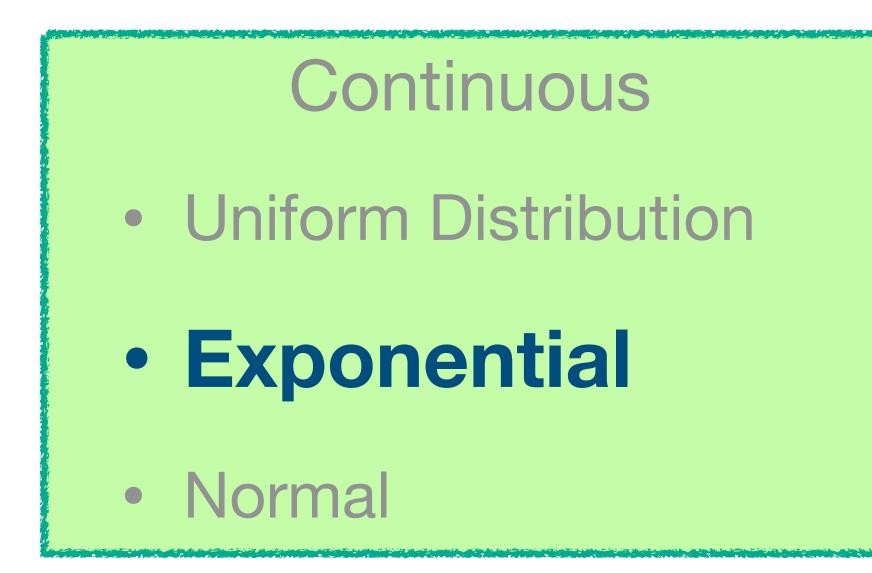
$$f(x) = \begin{cases} \frac{1}{b-a} & , a \le x \le b \\ 0 & , \text{otherwise} \end{cases}$$

•
$$\mathbb{E}(X) = (a+b)/2$$

•
$$\operatorname{Var}(X) = \frac{(b-a)^2}{12}$$

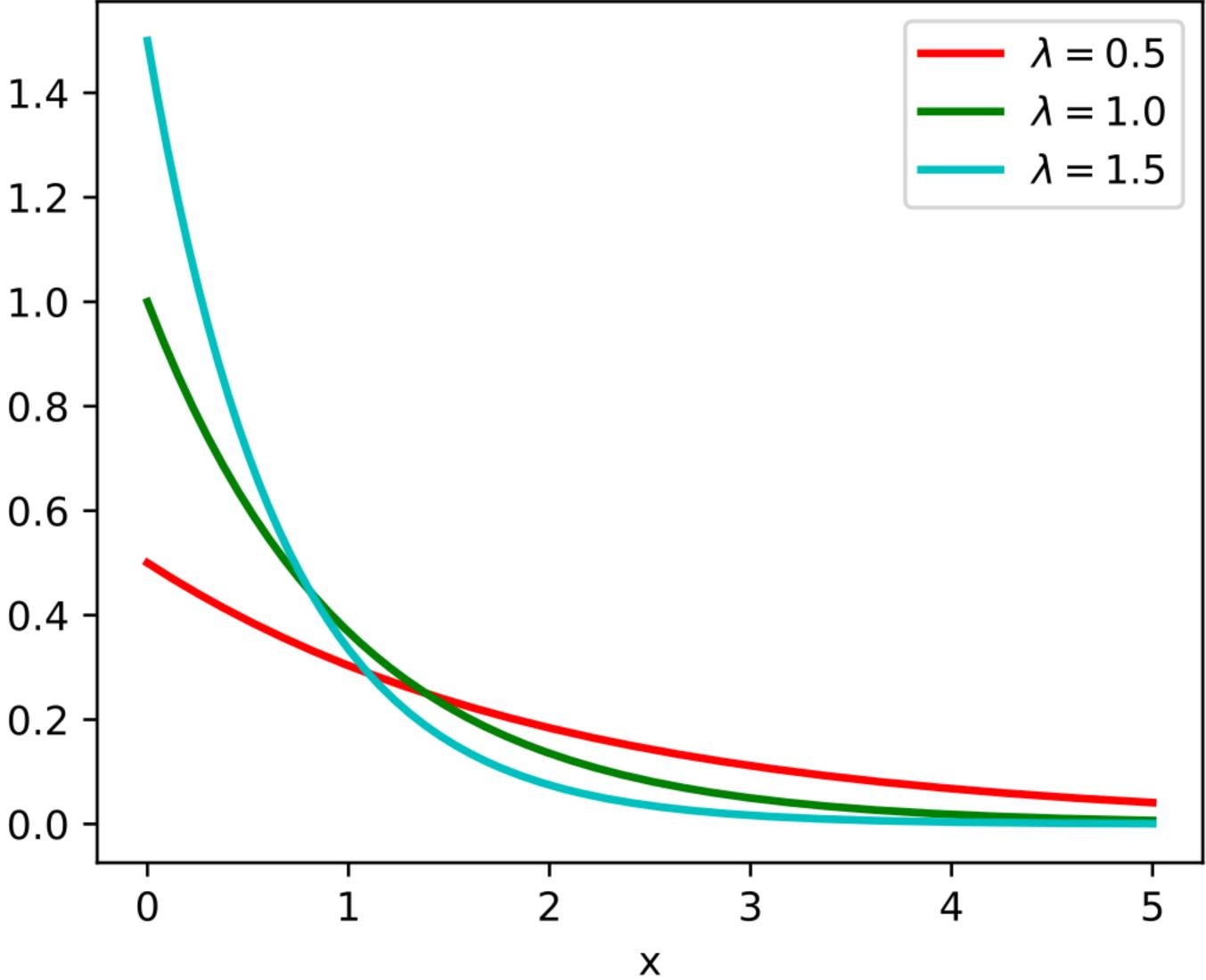


Road Map Let's explore their distribution, expectation and variance



Exponential Distribution

- $f(x) = \lambda e^{-\lambda x}$, for $x \ge 0$ 1.2 • $\mathbb{E}(X) = \frac{1}{2}$ 1.0 -8.0 <u>x</u> • $\operatorname{Var}(X) = \frac{1}{\lambda^2}$ 0.6 0.4 -
 - 0.2
 - 0.0



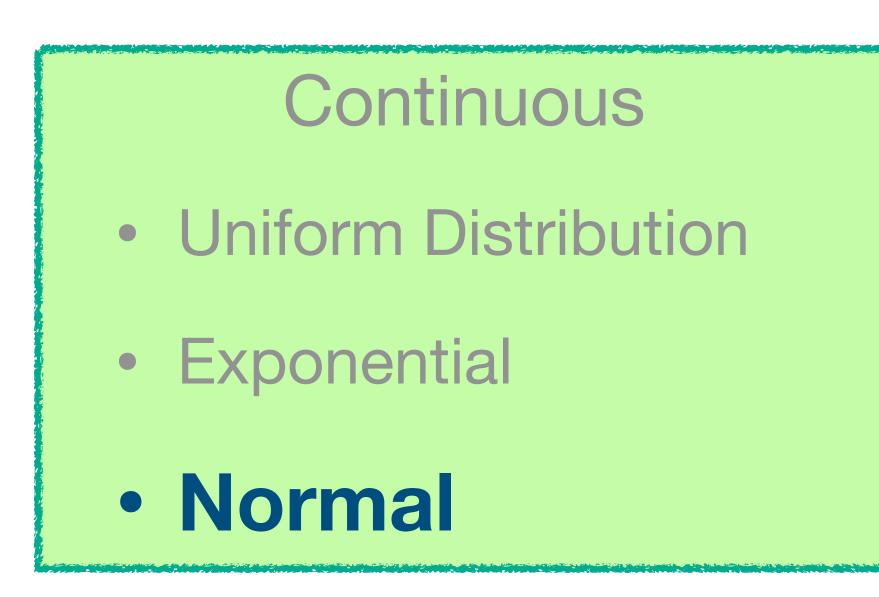
Exponential Distribution

Memoryless

- Useful model for various types of waiting time problems
 - telephone calls
 - service times
 - splitting of radioactive particles

$\Pr(X > s + t | X > s) = \Pr(X > t)$

Road Map Let's explore their distribution, expectation and variance

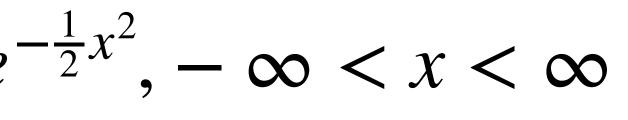


Normal Distribution a.k.a Gaussian Distribution

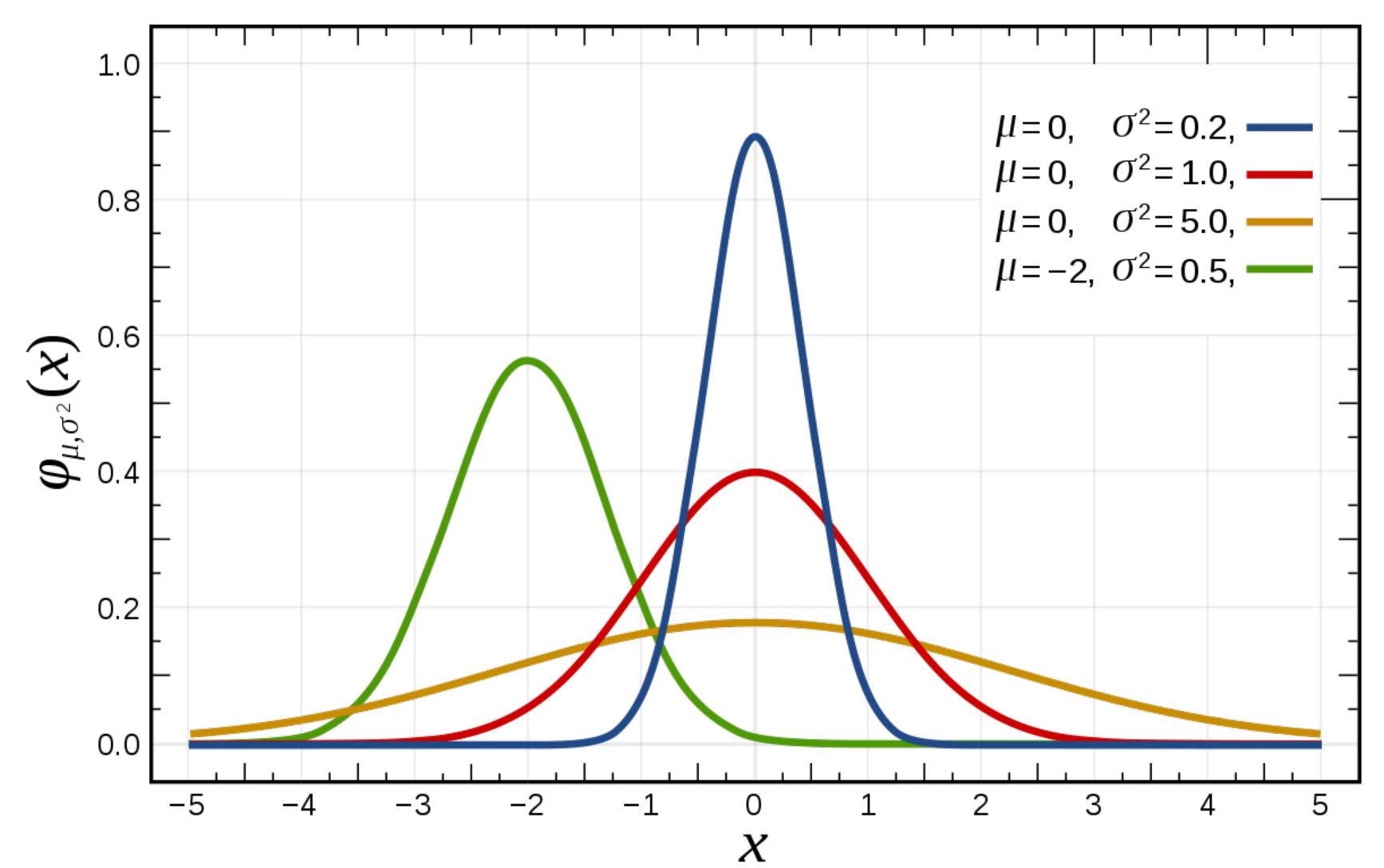
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{1}{2\pi\sigma}}$$

- $\mathbb{E}(X) = \mu$
- $\operatorname{Var}(X) = \sigma^2$
- standard/unit Normal Distribution: $\mu = 0, \sigma^2 = 1$

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2\pi}}$$



Normal Distribution a.k.a Gaussian Distribution



Normal Distribution a.k.a Gaussian Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{1}{2\pi\sigma}}$$

- $\mathbb{E}(X) = \mu$
- $\operatorname{Var}(X) = \sigma^2$
- standard/unit Normal Distribution: $\mu = 0, \sigma^2 = 1$

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2\pi}}$$

 $-\frac{1}{2}(x-\mu)^2$, $-\infty < x < \infty$

 $x^{-\frac{1}{2}x^2}, -\infty < x < \infty$