Probability and Statistics

Tail Inequalities

谢润烁 Nanjing University， 2023 Fall

Roadmap

- Tail Inequalities: Part I
- Markov Inequality
- Chebyshev Inequality
- Concentration of Measure
- Tail Inequalities: Part II
- Chernoff Bounds
- Application
- Randomized Quick Sort
- The Median Trick
- Load Balancing Problem
- More General Bounds

Tail Inequalities: Part I

In Analysis of Algorithms

- Question: X is the running time of algorithm \mathscr{A}
- Is it possible that $\operatorname{Pr}(X \geq \mathbb{E} X+t)$ very large?
- In analyzing the performance of a randomized algorithm, we often like to show that the behavior of the algorithm is good almost all the time
- i.e. Establish high probability bounds on their run-time
- i.e. Estimate the failure probability of algorithms

Markov’s Inequality

- For any random variable $X \geq 0$ and $a>0$

$$
\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

- Gives the best tail bound possible when all we know is
- the expectation of the random variable and
- the variable is nonnegative

1856 ~ 1922
Андре́й Андре́евич Ма́рков Andrey Andreyevich Markov

Markov’s Inequality

- For any random variable $X \geq 0$ and $a>0$

$$
\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

- Unfortunately, the Markov inequality is often too weak to yield useful results
- Can we leverage more information to gain a better bound?

Chebyshev's Inequality

- For any $a>0$

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}
$$

- Proof: Apply Markov’s Inequality

Пафну́тий Льво́вич Чебышёв
Pafnuty Lvovich Chebyshev

Chebyshev's Inequality

- For any $a>0$

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}
$$

- Is it better than Markov's Inequality?

Chebyshev's Inequality

- For any $a>0$

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}
$$

- Is it better than Markov's Inequality?
- Consider flipping coins $X \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$
- $\operatorname{Pr}\left(X \geq \frac{3}{4} n\right)$

Generalized Markov’s Inequality

- For any $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ and $a>0$

$$
\operatorname{Pr}(f(X) \geq a) \leq \frac{\mathbb{E}[f(X)]}{a}
$$

- Useful if $f(X)$ can "extract" useful information about X

Generalized Markov's Inequality

- For any $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ and $a>0$

$$
\operatorname{Pr}(f(X) \geq a) \leq \frac{\mathbb{E}[f(X)]}{a}
$$

- Example
- k th moment method:
- $f(X)=\mathbb{E}\left[X^{k}\right]$
- $f(X)=\mathbb{E}\left[(X-\mathbb{E} X)^{k}\right] \quad k$ th central moment
- Chebyshev's inequality: $f(X)=\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\operatorname{Var}(X)$
- Chernoff-Hoeffding bounds: $f(X)=\mathbb{E}\left[e^{\lambda X}\right]$

Example: Weierstrass's Approximation Theorem

- Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. For any $\epsilon>0$, there exists a polynomial such that

$$
\sup _{x \in[0,1]}|p(x)-f(x)| \leq \epsilon
$$

- For $x \in[0,1]$, let $Y_{x} \sim \operatorname{Bin}(n, x)$

$$
p(x)=\mathbb{E}\left[f\left(\frac{Y_{x}}{n}\right)\right] \text { is it a polynomial? }
$$

Example: Weierstrass's Approximation Theorem

. $|p(x)-f(x)|=\left|\mathbb{E}\left[f\left(\frac{Y_{x}}{n}\right)-f(x)\right]\right| \leq \mathbb{E}\left[\left|f\left(\frac{Y_{x}}{n}\right)-f(x)\right|\right]$

- Recall that
- $f(x)$ is continuous in $[a, b] \Rightarrow f(x)$ is uniformly continuous in $[a, b]$
- uniformly continuous $\Rightarrow \exists \delta>0$ s.t. $|f(x)-f(y)| \leq \frac{\epsilon}{2}$ for all $|x-y| \leq \delta$

Example: Weierstrass's Approximation Theorem

$$
|p(x)-f(x)| \leq \mathbb{E}\left[\left|f\left(\frac{Y_{x}}{n}\right)-f(x)\right|\right]
$$

. Denote A as event $\left|\frac{Y_{x}}{n}-x\right| \leq \delta$

- Use conditional expectation

$$
\begin{aligned}
\mathbb{E}\left[\left|f\left(\frac{Y_{x}}{n}\right)-f(x)\right|\right] & =\mathbb{E}\left[\left.\left|f\left(\frac{Y_{x}}{n}\right)-f(x)\right| \right\rvert\, A\right] \operatorname{Pr}(A)+\mathbb{E}\left[\left.\left|f\left(\frac{Y_{x}}{n}\right)-f(x)\right| \right\rvert\, A^{c}\right] \operatorname{Pr}\left(A^{c}\right) \\
& \leq \frac{\epsilon}{2}+\frac{1}{4 n \delta^{2}} \leq \epsilon \quad \text { if } n \geq \frac{1}{2 \epsilon \delta^{2}}
\end{aligned}
$$

Concentration of Measure

What is Concentration of Measure?

- The phenomenon that a function of a large number of random variables tends to concentrate its values in a relatively narrow range.
- Views from different scale
- Micro: random
- Macro: regular

Law of Large Number

The weak version, aka Khinchin(Хи́нчин)'s Law

- $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed random variables with mean μ and standard deviation σ
- For any constant $\varepsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\frac{\sum_{i=1}^{n} X_{i}}{n}-\mu\right|>\epsilon\right)=0
$$

- You are able to prove this now

Central Limit Theorem

- $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed random variables with mean μ and standard deviation σ
- For any real numbers a and b with $a<b$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(a \leq \frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sigma \sqrt{n}} \leq b\right)=\Phi(b)-\Phi(a)
$$

- Where $\Phi(x)$ is the distribution function of standard normal distribution $N(0,1)$

Central Limit Theorem

Fig. 5.6. Probability histogram for the unbiased die.

$$
p_{1}=0.2 \quad p_{2}=0.1 \quad p_{3}=0.0 \quad p_{4}=0.0 \quad p_{5}=0.3 \quad p_{6}=0.4
$$

Fig. 5.7. Probability histogram for a biased die.

In Analysis of Algorithms

- These results (LLN, CLT) are asymptotic and qualitative
- $n \rightarrow \infty$
- However, in the analysis of algorithms, we typically require quantitative estimates that are valid for finite (though large) values of n

Tail Inequalities: Part II

Chernoff and Hoeffding Bounds

- Extremely powerful in analysis of algorithms
- Giving exponentially decreasing bounds on the tail distribution
- Derived by applying Markov's inequality to the moment generating function of a random variable

Herman Chernoff

Moment Generating Function (MGF)

- Moment Generating Function

$$
M_{X}(\lambda)=\mathbb{E}\left[e^{\lambda X}\right]
$$

- In many cases, the function is well-defined in the neighborhood of zero
- Why Moment Generating?

$$
\mathbb{E}\left[X_{n}\right]=M_{X}^{(n)}(0)
$$

Chernoff Bounds

Tight Forms

Let $X=\sum_{i=1}^{n} X_{i}$ where $X_{1}, X_{2}, \ldots, X_{n} \in\{0,1\}$ are independent variables*
Let $\mu=\mathbb{E}[X]$

- for any $\delta \geq 0$,

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu} \text { (the Upper Tail) }
$$

- for any $0 \leq \delta \leq 1$,

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu} \text { (the Lower Tail) }
$$

Proof Idea

On Upper Tail

- $\operatorname{Pr}[X \geq(1+\delta) \mu]=\operatorname{Pr}\left[e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right] \leq \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$
- Find a λ to minimize $\frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda(1+\delta) \mu}}$

Chernoff Bounds

Useful Forms

- For any $0<\delta<1$,

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq \exp \left(-\frac{\mu \delta^{2}}{3}\right) \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq \exp \left(-\frac{\mu \delta^{2}}{2}\right)
\end{aligned}
$$

- For $t \geq 2 e \mu$,

$$
\operatorname{Pr}[X \geq t] \leq 2^{-t}
$$

Chernoff Bounds

- Compared to Markov's and Chebyshev's Inequalities
- How is Chernoff Bounds' performance?
- Consider flipping coins $X \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$ again
- $\operatorname{Pr}\left(X \geq \frac{3}{4} n\right)$

Application

The Median Trick

- Suppose we want to estimate the value of m
- Let \mathscr{A} be an algorithm that outputs \hat{Z} satisfying

$$
\operatorname{Pr}[(1-\epsilon) m \leq \hat{Z} \leq(1+\epsilon) m] \geq \frac{3}{4}
$$

- How to improve our accuracy using \mathscr{A} ?
- Let X be the median of $\widehat{Z}_{1}, \widehat{Z}_{2}, \ldots, \widehat{Z}_{n}$

$$
\operatorname{Pr}[(1-\epsilon) m \leq X \leq(1+\epsilon) m] \geq ?
$$

Randomized Quicksort

- We denote X as the running time of randomized quicksort, i.e., \#comparisons
- You've learned in your DS course that
- $\mathbb{E}(X)=\Theta(n \log n)$

Randomized Quicksort

智能软件与工程学院

Randomized QuickSort

－Harmonic series
－$H_{n}=\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$
－Hence， $\mathbb{E}[X]<\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}<2 n H_{n}<2 n(1+\ln n)=O(n \lg n)$
－Combined the fact that in the best case（balanced partition each time） randomized quick sort is $\Theta(n \lg n)$ ，the expected running time is $\Theta(n \lg n)$ ．
－In fact，runtime of RndQuickSort is $O(n \log n)$ with high probability！

Randomized Quicksort

- Now we can prove that the running time is $O(n \lg n)$ with high probability

$$
\text { i.e. } \lim _{n \rightarrow \infty} \operatorname{Pr}[X>O(n \lg n)]=0
$$

- Can we use the way we analyze the expected running time?

$$
{ }^{*}[n]=\{1,2, \ldots, n\}
$$

Load Balancing / Occupancy

Balls into Bins Model

- We throw m balls into n bins uniformly and independently
- Y_{i} : number of balls, which is called the load, in the i-th bin

$$
\mathbb{E}\left(Y_{i}\right)=\frac{m}{n}
$$

- What is the maximum load of all bins?

Load Balancing / Occupancy

Balls into Bins Model

Load Balancing / Occupancy

Balls into Bins Model

- When $m=n$, the maximum load is

$$
O\left(\frac{e \ln n}{\ln \ln n}\right) \text { w.h.p. }
$$

- When $m>n \ln n$, the maximum load is

$$
O\left(\frac{m}{n}\right) \text { w.h.p. }
$$

More General Bounds

Chernoff-Hoeffding Bounds

- Let X_{1}, \ldots, X_{n} be independent random variables with $\operatorname{Pr}\left(a_{i} \leq X_{i} \leq b_{i}\right)=1$ for constants a_{i} and b_{i}. Then

$$
\operatorname{Pr}(|X-\mu| \geq \varepsilon) \leq 2 e^{\frac{-2 \varepsilon^{2}}{\Sigma_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}}
$$

. Where $X=\sum_{i=1}^{n} X_{i}, \mu=\mathbb{E}(X)=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$

The Method of Bounded Differences

- For independent X_{1}, \ldots, X_{n}, if n-variate function f satisfies the Lipschitz condition: for every $1 \leq i \leq n$ and all x_{1}, \ldots, x_{n} and y_{i}

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

- Then for any $\epsilon>0$:

$$
\operatorname{Pr}\left[\left\lvert\, f\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left(f\left(X_{1}, \ldots, X_{n}\right) \mid \geq \epsilon\right] \leq 2 e^{\frac{-2 c^{2}}{\overline{L i}_{i=1}^{c} c_{i}}}\right.\right.
$$

