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Talil Inequalities: Part |



In Analysis of Algorithms

e Question: X is the running time of algorithm &/

e Is it possible that Pr(X > EX + ¢) very large?

* |n analyzing the performance of a randomized algorithm, we often like to
show that the behavior of the algorithm is good almost all the time

* J.e. Establish high probability bounds on their run-time

* J.e. Estimate the failure probability of algorithms



Markov’s Inequality

e For any random variable X > O and a > 0

=p.q
Pr( X >a) <——

d

* Gives the best tail bound possible when all we
Know is

* the expectation of the random variable and

A. A. Mapron (1886).

* the variable is nonnegative 1856 ~ 1922
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Andrey Andreyevich Markov



Markov’s Inequality

e For any random variable X > O and a > 0

= [ X ]

d

Pr(X > a) <

* Unfortunately, the Markov inequality is often too weak to yield useful results

 Can we leverage more information to gain a better bound?



Chebyshev’s Inequality

e« Foranya > 0

Pr(| X — E[X]| > a) <

* Proof: Apply Markov’s Inequality

Var| X]

a2

1821 ~ 1894
[TadbuyTHH JIbBOBUY YeObIIIER
Patnuty Lvovich Chebyshev
[pef'nut’tj Tvovite teibi'sof]



Chebyshev’s Inequality

e« Foranya > 0
Var| X]

a2

Pr(| X — E[X]| > a) <

* |s it better than Markov’s Inequality??




Chebyshev’s Inequality

e« Foranya > 0
Var| X]

a2

Pr(| X — E[X]| > a) <
* |s it better than Markov’s Inequality??

|
. Consider flipping coins X ~ Bin(n, 5)

3
. Pr(X > —
( 4n)




Generalized Markov’s Inequality

« Foranyf: R - R, janda > 0

=[f(X)]

d

Pr(f(X) > a) <

o Useful if f(X) can “extract” useful information about X



Generalized Markov’s Inequality

 Foranyf: R - R, janda > 0

Pr(f(X) > a) <

 Example

¢ kth moment method:

. fAX) = E[X*] kth moment

[ /(X))

d

. f(X) = E[(X — EX)"] kth central moment

« Chebyshev’s inequality: f(X) =

» Chernoff-Hoeffding bounds: f(X) =

—[(X =

AX ]

“[e

-X)?] = Var(X)




Example: Weierstrass’s Approximation Theorem

e Letf:]0,1] = [0,1] be a continuous function. For any € > 0, there exists a
polynomial such that

sup |p(x) —f(x0)| < e
xe|0,1]

» Forx € [0,1], let Y, ~ Bin(n, x)
Y

p(x) = —[f(f)] 1S it 2 polynormial?




Example: Weierstrass’s Approximation Theorem

|

e f(x) is continuous in [a, b] = f(x) is uniformly continuous in [a, D]

Y
, 1p(x) = f) | = ‘ - [f(f) — J(%)

Yx
< b ”f(g) — f(x)

e Recall that

. uniformly continuous = J0 > 0 s.t. |f(x) — f(y)| < % forall |x—y| <o



. Denote A as event

|p(x) —f(x) | <

Yx
— —x| <0
n

* Use conditional expectation

|

Yx
J(=) = f(x)
n

|

€
<—+
2

YX
: [ |f(—) —f(x)
n

|
< €
4nd?

|

Yx
J(=) = f(x) ]
n

Y
\A] Pr(A) + ”f(;x) — f(%)

|
ifn >
2€6?

Example: Weierstrass’s Approximation Theorem

| AC] Pr(A°)



Concentration of Measure




What is Concentration of Measure?

» The phenomenon that a function of a large WIRCILIRRIIIL S Bhxibns
number of random variables tends to FOR THE ANALYSIS OF
concentrate its values in a relatively narrow RANDOMIZED ALGORITHMS

range.
e Views from different scale

e Micro: random

 Macro: regular

Devdatt P. Dubhashi
Alessandro Panconesi

CAMBRIDGE



Law of Large Number

The weak version, aka Khinchin(XnHuunH)’s Law

e X{,X,,...,X areindependent and identically distributed random variables
with mean p and standard deviation o

» For any constant € > 0 we have

i X
lim Pr| | —=— — | >¢| =0

n— 00 14}

* You are able to prove this now



Central Limit Theorem

e X{,X,,...,X areindependent and identically distributed random variables
with mean p and standard deviation o

» For any real numbers a and b with a < b,
. _ N T N
ImPrla<<——<bHb | =DbH) — D(a)

« Where ®(x) is the distribution function of standard normal distribution N(0,1)



Central Limit Theorem

1 _ _ _ _ _ _

—a -

n=5 | n=10 n=5 n=10

n=15 n=20 n=15 n=20
Fig. 5.6. Probability histogram for the unbiased die. Fig. 5.7. Probability histogram for a biased die.



In Analysis of Algorithms

 These results (LLN, CLT) are asymptotic and qualitative

* Nn — OO

 However, in the analysis of algorithms, we typically require quantitative
estimates that are valid for finite (though large) values of n



Tail Inequalities: Part Il



Chernoff and Hoeffding Bounds

 Extremely powerful in analysis of algorithms

* (Giving exponentially decreasing bounds on the tall
distribution

* Derived by applying Markov’s inequality to the
moment generating function of a random variable

,“ Lo

1923 ~
Herman Chernoftf



Moment Generating Function (MGF)

» Moment Generating Function

My(%) = E[e*"]

* |n many cases, the function is well-defined in the neighborhood of zero

» Why Moment Generating”?




*+ which is referred to as Poisson Trial

Chernoff Bounds

Tight Forms

n
Let X = Z X where X, X5, ..., X, € 10,1} are independent variables*
i=1

Let u = E[X]

« forany o > 0,
0

(1 + 8)(1+)

u
Pr[X > (1 +0o)u] < ( ) (the Upper Tail)

e forany ) <o <1,
o0

(1 —8)1-5

7
Pr[ X < (1 —o)u] < ( ) (the Lower Tail)



Proof Idea
On Upper Tail

— [e}tX]

. Pr[X > (1 + &)u] = Pr[e™® > 1K) <

- [e/lX]

., Find a A to minimize




Chernoff Bounds

Useful Forms

e Forany (0 <o < 1,

Pr[X > (1 +0)u] <exp (—

PriX < (1 —o)u] < exp (—

» Fort > 2eu,

Pr[X > 1] <27



Chernoff Bounds

« Compared to Markov’s and Chebyshev’s Inequalities

« How is Chernoff Bounds’ performance?

|
. Consider flipping coins X ~ Bin(n, 5) again

3
. Pr(X > —
( 4n)



Application



The Median Trick

e Suppose we want to estimate the value of m

« Let & be an algorithm that outputs /Z\ satisfying

Pr{(1 —e)m < Z < (1 + e)m] z%

» How to improve our accuracy using & ?

N

e Let X be the median of /Z\l, /Z\z, s Ly

Pr[(l —em < X< (1 +e)m]>7?



Randomized Quicksort

« We denote X as the running time of randomized quicksort, i.e., #comparisons

* You’ve learned in your DS course that

e E(X) = 0O(nlogn)



Randomized Quicksort

[z
W | st s TR
' 7 &h'uul'qu'Jmel'fi}{cm Software und'i‘ntgx'num'nw

Randomized QuickSort

e Harmonic series

S 1
» Hn=]§;~lnn

n—1 n
2
Hence, E[X] < Z Z Z <2nH, < 2n(l +Inn) = O(nlgn)
i=1 k=1

« Combined the fact that in the best case (balanced partition each time)
randomized quick sort is ®(n 1g n), the expected running time is ®(n 1g n).

e In fact, runtime of RndQuickSort is O(nlog n) with high probability!




Randomized Quicksort

» Now we can prove that the running time is O(n 1g n) with high probability
i.e. lim Pr[X > O(nlgn)] =0

n— o0

 Can we use the way we analyze the expected running time?



In] =1{1,2,...,n}

Load Balancing / Occupancy

Balls into Bins Model

 We throw m balls into n bins uniformly and independently

e Y:: number of balls, which is called the load, in the -th bin

m
(V) =—
I

e \What is the maximum load of all bins?



Load Balancing / Occupancy

Balls into Bins Model

balls =100, bins =100 balls =2000, bins =100

20 40 60 80 100 20 40 60 80 100
balls =600, bins =100 balls =5000, bins =100
20 . v v v 100 . v v
0

20 40 60 80 100 20 40 60 80 100

B



Load Balancing / Occupancy

Balls into Bins Model

e When m = n, the maximum load Is

elnn
0, w.h.p.
( Inlnn )

« When m > nlnn, the maximum load is

m
O (—) w.h.p.
n




More General Bounds



Chernoff-Hoeffding Bounds

. Let X;,...,X, beindependent random variables with Pr(a, < X; < b,) = 1
for constants a; and b,. Then

— 282

Pr ( |X—//t| > 8) < D e Zie1 bi—a)?

= [Xl]

M=

~ Where X = ZXZ-,,M = E(X) =
i=1 i=1



The Method of Bounded Differences

- For independent X;, ..., X , if n-variate function f satisfies the Lipschitz
condition: forevery 1 <1 <nandallx,...,x, and y,

< C;

|f(x1, s X)) = (X e X s Vis Xijsqs -+ 00 X))

e Then for any € > O:

— 262

> €] < Qe iz

Pr “f(Xl,...,Xn)— (X, ..., X



