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Tail Inequalities: Part I



In Analysis of Algorithms 

• Question:  is the running time of algorithm 


• Is it possible that  very large?


• In analyzing the performance of a randomized algorithm, we often like to 
show that the behavior of the algorithm is good almost all the time


• i.e. Establish high probability bounds on their run-time


• i.e. Estimate the failure probability of algorithms

X 𝒜

Pr(X ≥ 𝔼X + t)



Markov’s Inequality

1856 ~ 1922

Андре́й Андре́евич Ма́рков

Andrey Andreyevich Markov

• For any random variable  and 





• Gives the best tail bound possible when all we 
know is 


• the expectation of the random variable and


• the variable is nonnegative

X ≥ 0 a > 0

Pr(X ≥ a) ≤
𝔼[X]

a



Markov’s Inequality

• For any random variable  and 





• Unfortunately, the Markov inequality is often too weak to yield useful results


• Can we leverage more information to gain a better bound?

X ≥ 0 a > 0

Pr(X ≥ a) ≤
𝔼[X]

a



Chebyshev’s Inequality

1821 ~ 1894

Пафну́тий Льво́вич Чебышёв


Pafnuty Lvovich Chebyshev

[pɐfˈnutʲɪj ˈlʲvovʲɪtɕ tɕɪbɨˈʂof]

• For any 





• Proof: Apply Markov’s Inequality

a > 0

Pr( |X − 𝔼[X] | ≥ a) ≤
Var[X]

a2



Chebyshev’s Inequality

• For any 





• Is it better than Markov’s Inequality?

a > 0

Pr( |X − 𝔼[X] | ≥ a) ≤
Var[X]

a2



Chebyshev’s Inequality

• For any 





• Is it better than Markov’s Inequality?


• Consider flipping coins 


•

a > 0

Pr( |X − 𝔼[X] | ≥ a) ≤
Var[X]

a2

X ∼ Bin(n,
1
2

)

Pr(X ≥
3
4

n)



Generalized Markov’s Inequality

• For any  and 





• Useful if  can “extract” useful information about 

f : ℝ → ℝ≥0 a > 0

Pr( f(X) ≥ a) ≤
𝔼[ f(X)]

a
f(X) X



Generalized Markov’s Inequality

• Example


• th moment method: 


•                       th moment


•          th central moment


• Chebyshev’s inequality: 


• Chernoff-Hoeffding bounds: 

k

f(X) = 𝔼[Xk] k

f(X) = 𝔼[(X − 𝔼X)k] k

f(X) = 𝔼[(X − 𝔼X)2] = Var(X)

f(X) = 𝔼[eλX]

• For any  and 
f : ℝ → ℝ≥0 a > 0

Pr( f(X) ≥ a) ≤
𝔼[ f(X)]

a



Example: Weierstrass’s Approximation Theorem 

• Let  be a continuous function. For any , there exists a 
polynomial such that





• For , let 


f : [0,1] → [0,1] ϵ > 0

sup
x∈[0,1]

|p(x) − f(x) | ≤ ϵ

x ∈ [0,1] Yx ∼ Bin(n, x)

p(x) = 𝔼[ f(
Yx

n
)] is�it�a�polynomial?



Example: Weierstrass’s Approximation Theorem 

• 


• Recall that 


•  is continuous in    is uniformly continuous in 


• uniformly continuous 

|p(x) − f(x) | = 𝔼 [f(
Yx

n
) − f(x)] ≤ 𝔼 [ f(

Yx

n
) − f(x) ]

f(x) [a, b] ⇒ f(x) [a, b]

⇒ ∃δ > 0 s.t.  | f(x) − f(y) | ≤
ϵ
2
 for all  |x − y | ≤ δ



Example: Weierstrass’s Approximation Theorem 

• Denote  as event 


• Use conditional expectation





                                         if 

A
Yx

n
− x ≤ δ

𝔼 [ f(
Yx

n
) − f(x) ] = 𝔼 [ f(

Yx

n
) − f(x) |A] Pr(A) + 𝔼 [ f(

Yx

n
) − f(x) |Ac] Pr(Ac)

≤
ϵ
2

+
1

4nδ2
≤ ϵ n ≥

1
2ϵδ2

|p(x) − f(x) | ≤ 𝔼 [ f(
Yx

n
) − f(x) ]



Concentration of Measure



What is Concentration of Measure?

• The phenomenon that a function of a large 
number of random variables tends to 
concentrate its values in a relatively narrow 
range.


• Views from different scale


• Micro: random


• Macro: regular



Law of Large Number
The weak version, aka Khinchin(Хи́нчин)’s Law

•  are independent and identically distributed random variables 
with mean  and standard deviation 


• For any constant  we have 





• You are able to prove this now

X1, X2, . . . , Xn
μ σ

ε > 0

lim
n→∞

Pr
∑n

i=1 Xi

n
− μ > ϵ = 0



Central Limit Theorem

•  are independent and identically distributed random variables 
with mean  and standard deviation 


• For any real numbers  and  with , 





• Where  is the distribution function of standard normal distribution 

X1, X2, . . . , Xn
μ σ

a b a < b

lim
n→∞

Pr (a ≤
∑n

i=1 Xi − nμ

σ n
≤ b) = Φ(b) − Φ(a)

Φ(x) N(0,1)



Central Limit Theorem



In Analysis of Algorithms 

• These results (LLN, CLT) are asymptotic and qualitative 

• 


• However, in the analysis of algorithms, we typically require quantitative 
estimates that are valid for finite (though large) values of 

n → ∞

n



Tail Inequalities: Part II



Chernoff and Hoeffding Bounds

• Extremely powerful in analysis of algorithms


• Giving exponentially decreasing bounds on the tail 
distribution 


• Derived by applying Markov’s inequality to the 
moment generating function of a random variable

1923 ~

Herman Chernoff



Moment Generating Function (MGF)

• Moment Generating Function





• In many cases, the function is well-defined in the neighborhood of zero


• Why Moment Generating?


MX(λ) = 𝔼[eλX]

𝔼[Xn] = M(n)
X (0)



Chernoff Bounds
Tight Forms

Let  where  are independent variables*


Let 


• for any ,


(the Upper Tail)


• for any , 


(the Lower Tail)

X =
n

∑
i=1

Xi X1, X2, …, Xn ∈ {0,1}

μ = 𝔼[X]

δ ≥ 0

Pr[X ≥ (1 + δ)μ] ≤ ( eδ

(1 + δ)(1+δ) )
μ

0 ≤ δ ≤ 1

Pr[X ≤ (1 − δ)μ] ≤ ( e−δ

(1 − δ)(1−δ) )
μ

*: which is referred to as Poisson Trial



Proof Idea
On Upper Tail

• 


• Find a  to minimize 

Pr[X ≥ (1 + δ)μ] = Pr[eλX ≥ eλ(1+δ)μ] ≤
𝔼 [eλX]
eλ(1+δ)μ

λ
𝔼 [eλX]
eλ(1+δ)μ



Chernoff Bounds
Useful Forms

• For any ,








• For , 


0 < δ < 1

Pr[X ≥ (1 + δ)μ] ≤ exp (−
μδ2

3 )
Pr[X ≤ (1 − δ)μ] ≤ exp (−

μδ2

2 )
t ≥ 2eμ

Pr[X ≥ t] ≤ 2−t



Chernoff Bounds

• Compared to Markov’s and Chebyshev’s Inequalities


• How is Chernoff Bounds’ performance?


• Consider flipping coins  again


•

X ∼ Bin(n,
1
2

)

Pr(X ≥
3
4

n)



Application



The Median Trick

• Suppose we want to estimate the value of 


• Let  be an algorithm that outputs  satisfying





• How to improve our accuracy using ?


• Let  be the median of 


m

𝒜 ̂Z

Pr[(1 − ϵ)m ≤ ̂Z ≤ (1 + ϵ)m] ≥
3
4

𝒜

X ̂Z1, ̂Z2, …, ̂Zn

Pr[(1 − ϵ)m ≤ X ≤ (1 + ϵ)m] ≥ ?



Randomized Quicksort

• We denote  as the running time of randomized quicksort, i.e., #comparisons


• You’ve learned in your DS course that


•

X

𝔼(X) = Θ(n log n)



Randomized Quicksort



Randomized Quicksort

• Now we can prove that the running time is  with high probability


i.e. 


• Can we use the way we analyze the expected running time?

O(n lg n)

lim
n→∞

Pr[X > O(n lg n)] = 0



Load Balancing / Occupancy
Balls into Bins Model

• We throw  balls into  bins uniformly and independently


• : number of balls, which is called the load, in the -th bin





• What is the maximum load of all bins?

m n

Yi i

𝔼(Yi) =
m
n

*[n] = {1,2,…, n}



Load Balancing / Occupancy
Balls into Bins Model



Load Balancing / Occupancy
Balls into Bins Model

• When , the maximum load is 


 w.h.p.


• When , the maximum load is 


 w.h.p.

m = n

O ( e ln n
ln ln n )

m > n ln n

O ( m
n )



More General Bounds



Chernoff-Hoeffding Bounds

• Let  be independent random variables with  
for constants  and . Then 





• Where , 

X1, . . . , Xn Pr(ai ≤ Xi ≤ bi) = 1
ai bi

Pr ( X − μ ≥ ε) ≤ 2e
−2ε2

∑n
i=1 (bi − ai)2

X =
n

∑
i=1

Xi μ = 𝔼(X) =
n

∑
i=1

𝔼[Xi]



The Method of Bounded Differences

• For independent , if -variate function  satisfies the Lipschitz 
condition: for every  and all  and 





• Then for any : 


X1, …, Xn n f
1 ≤ i ≤ n x1, …, xn yi

f(x1, …, xn) − f(x1, …, xi−1, yi, xi+1, …, xn) ≤ ci

ϵ > 0

Pr [ f(X1, …, Xn) − 𝔼( f(X1, …, Xn) ≥ ϵ] ≤ 2e
−2ϵ2

∑n
i=1 ci


