# Probability and Statistics 

Introduction to Markov Chain

谢润烁 Nanjing University， 2023 Fall

## Basics of Markov Chain

## Random Process

- A collection of random variable $\{X(t): t \in T\}$
- With time dimension
- Property
- Finite: $\operatorname{dom}(X)$ is finite
- Discrete time: $t$ takes on countable value (WLOG, $T=\{0,1,2, \ldots\}$ )
- We only study finite and discrete time random process


## Markov Chain

- Markov chain is a random process $\{X(t): T \in \mathbb{N}\}$ that
- $\operatorname{Pr}\left(X_{t}=a_{t} \mid X_{t-1}=a_{t-1}, X_{t-2}=a_{t-2}, \ldots, X_{0}=a_{0}\right)=\operatorname{Pr}\left(X_{t}=a_{t} \mid X_{t-1}=a_{t-1}\right)$
- Memoryless or Markovian property
- We denote $\operatorname{Pr}\left(X_{t}=a_{t} \mid X_{t-1}=a_{t-1}\right)$ by $P_{a_{t-1}, a_{t}}$
- Which we call as transition probability


## Example: The Gambler's Ruin

- Initially you have $\$ x, 0<x<n$
- Game rule:
- Toss a coin each time
- Win: add \$1
- Lose: lose \$1
- When the game is over: you have $\$ n$ or $\$ 0$ (you lose all your money!)


## Example: The Gambler's Ruin

- $X_{t}$ : money at time $t$
- $X_{0}=x$
- $1 \leq j \leq n-1$
- $\operatorname{Pr}\left(X_{t}=j+1 \mid X_{t-1}=j\right)=\frac{1}{2}$
- $\operatorname{Pr}\left(X_{t}=j-1 \mid X_{t-1}=j\right)=\frac{1}{2}$
- $j=0$ or $n$
- $\operatorname{Pr}\left(X_{t}=j \mid X_{t-1}=j\right)=1$
- Question:
- Probability of win/lose?
- How many toss coins does it take?


## Transition Matrix

$$
P=\left(\begin{array}{ccccc}
P_{0,0} & P_{0,1} & \ldots & P_{0, j} & \ldots \\
P_{1,0} & P_{1,1} & \ldots & P_{1, j} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
P_{i, 0} & P_{i, 1} & \ldots & P_{i, j} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \vdots
\end{array}\right)
$$

- Why would we need it?


## Transition Matrix

- $\operatorname{Pr}\left(X_{t}=j\right)=\sum_{i=0}^{n} \operatorname{Pr}\left(X_{t-1}=i\right) \cdot \operatorname{Pr}\left(X_{t}=j \mid X_{t-1}=i\right)$

Let $p_{t}$ denote $\left[\begin{array}{c}\operatorname{Pr}\left(X_{t}=0\right) \\ \operatorname{Pr}\left(X_{t}=1\right) \\ \vdots \\ \operatorname{Pr}\left(X_{t}=n\right)\end{array}\right]^{T}$, we have $p_{t}(j)=\sum_{i=0}^{n} p_{t-1}(i) P_{i j}$

- $p_{t}=p_{t-1} P$
- $p_{t}=p_{0} P^{t}$


## Example: A 2-SAT Algorithm

## SAT Problem

- $n$ boolean variables: $x_{1}, x_{2}, \ldots, x_{n} \in\{T, F\}$
- Conjunctive Normal Form (CNF):

$$
\Phi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{3} \vee \neg x_{4} \vee \neg x_{5}\right)
$$

- $k$-CNF: each clause contains exactly variables
- $k$-SAT problem
- Given $k$-CNF formula $\Phi$
- Determine whether $\Phi$ is satisfiable


## Example: A 2-SAT Algorithm

- \#Possible assignment: $2^{n}$
- Are there fast algorithms?


## 2-SAT Algorithm:

1. Start with an arbitrary truth assignment.
2. Repeat up to $2 m n^{2}$ times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied.
(b) Choose uniformly at random one of the literals in the clause and switch the value of its variable.
3. If a valid truth assignment has been found, return it.
4. Otherwise, return that the formula is unsatisfiable.

## Example: A 2-SAT Algorithm

- We can view an assignment as a vector $v \in\{0,1\}^{n}$
- $S$ : target assignment which is satisfiable
- $A_{t}$ : assignment at step $t$
- $X_{t}$ : the number of variables in $A_{t}$ that have the same value in $S$
- i.e. $n-\left\|A_{t}-S\right\|_{1}$
- $X_{t} \in\{0,1, \ldots, n\}$


## Example: A 2-SAT Algorithm

- $1 \leq j \leq n-1$
- $\operatorname{Pr}\left(X_{t}=j+1 \mid X_{t-1}=j\right) \geq \frac{1}{2}$
- $\operatorname{Pr}\left(X_{t}=j-1 \mid X_{t-1}=j\right) \leq \frac{1}{2}$
- Other
- $\operatorname{Pr}\left(X_{t}=1 \mid X_{t-1}=0\right)=1$
- $\operatorname{Pr}\left(X_{t}=n \mid X_{t-1}=n\right)=1$


## Example: A 2-SAT Algorithm

## A Pessimistic Version

- $1 \leq j \leq n-1$
- $\operatorname{Pr}\left(X_{t}=j+1 \mid X_{t-1}=j\right) \geq \frac{1}{2}$
- $\operatorname{Pr}\left(X_{t}=j-1 \mid X_{t-1}=j\right) \leq \frac{1}{2}$
- Other
- $\operatorname{Pr}\left(X_{t}=1 \mid X_{t-1}=0\right)=1$
- $\operatorname{Pr}\left(X_{t}=n \mid X_{t-1}=n\right)=1$
- $1 \leq j \leq n-1$
- $\operatorname{Pr}\left(Y_{t}=j+1 \mid Y_{t-1}=j\right)=\frac{1}{2}$
- $\operatorname{Pr}\left(Y_{t}=j-1 \mid Y_{t-1}=j\right)=\frac{1}{2}$
- Other
- $\operatorname{Pr}\left(Y_{t}=1 \mid Y_{t-1}=0\right)=1$
- $\operatorname{Pr}\left(Y_{t}=n \mid Y_{t-1}=n\right)=1$


## Example: A 2-SAT Algorithm

- It takes more time for $Y$ to reach $n$ than $X$
- $Z_{j}$ : the number of steps to reach $n$ from state $j$ of $Y$
- $h_{j}: \mathbb{E}\left[Z_{j}\right]$
. $Z_{j}=\frac{1}{2}\left(Z_{j+1}+1\right)+\frac{1}{2}\left(Z_{j-1}+1\right), 2 \leq j \leq n-1$
- $Z_{n}=0$
- $Z_{0}=Z_{1}+1$


## Example: A 2-SAT Algorithm

- $h_{j}=\frac{1}{2}\left(h_{j+1}+h_{j-1}\right)+1$
- $h_{n}=0, h_{0}=h_{1}+1$
- Solve the recurrence
- $h_{j}=h_{j+1}+2 j+1$
- $h_{0}=\sum_{i=0}^{n-1}(2 i+1)=n^{2}$


## Example: A 2-SAT Algorithm

- It takes more time for $Y$ to reach $n$ than $X$
- $Z_{j}$ : the number of steps to reach $n$ from state $j$ of $Y$
- $h_{j}=\mathbb{E}\left[Z_{j}\right]$
. $h_{0}=\sum_{i=0}^{n-1}(2 i+1)=n^{2}$
- The expected steps to find a satisfiable solution is bounded by $n^{2}$


## Long-term Behavior

## Classification of States

- Communicate
- Irreducible
- Recurrence
- Aperiodic \& Periodic
- Ergodic


## Communication

- State $j$ is accessible from state $i: i \rightarrow j$
- $\exists n>0 . P_{i, j}^{n}>0$
- State $i$ and state $j$ communicate: $i \leftrightarrow j$
- A Markov chain is irreducible if all states belong to one communicating class
- Strongly Connected Graph


## Recurrence

- Let $r_{i, j}^{t}$ denote the probability that
- starting at state $i$, the first transition to state $j$ occurs at time $t$
- i.e. $r_{i, j}^{t}=\operatorname{Pr}\left(X_{t}=j\right.$ and, for $\left.1 \leq s \leq t-1, X_{s} \neq j \mid X_{0}=i\right)$
. A state is recurrent if $\sum_{t \geq 1} r_{i, i}^{t}=1$, and it is transient if $\sum_{t \geq 1} r_{i, i}^{t}<1$
- A Markov chain is recurrent if every state in the chain is recurrent


## Example: The Gambler's Ruin

- Initially you have $\$ x, 0<x<n$
- Game rule:
- Toss a coin each time
- Win: add \$1
- Lose: lose \$1
- When the game is over: you have $\$ n$ or $\$ 0$ (you lose all your money!)


## Example: The Gambler's Ruin

- $X_{t}$ : money at time $t$
- $X_{0}=x$
- What is the probability of winning and losing?
- $1 \leq j \leq n-1$
- $\operatorname{Pr}\left(X_{t}=j+1 \mid X_{t-1}=j\right)=\frac{1}{2}$
- $\operatorname{Pr}\left(X_{t}=j-1 \mid X_{t-1}=j\right)=\frac{1}{2}$
- $j=0$ or $n$
- $\operatorname{Pr}\left(X_{t}=j \mid X_{t-1}=j\right)=1$


## Example: The Gambler's Ruin

- $i=1,2, \ldots, n-1$ are all transient states
- $\lim p_{t}(i)=0$
$t \rightarrow \infty$
- $\lim _{t \rightarrow \infty} p_{t}(n)=q, \lim _{t \rightarrow \infty} p_{t}(0)=1-q$
- $\mathbb{E}\left(X_{t}\right)=\sum_{i=0}^{n} i p_{t}(i)=x$
- $\lim _{t \rightarrow \infty} \mathbb{E}\left(X_{t}\right)=n q=x \Rightarrow q=\frac{x}{n}$


## Periodicity

- Periodic: a state $j$ is periodic if
- $\exists \Delta>1 . s \nmid \Delta \rightarrow \operatorname{Pr}\left(X_{t}=j \mid X_{0}=j\right)=0$
- A Markov chain is periodic if any state in the chain is periodic
- A state or chain that is not periodic is aperiodic


## Stationary Distribution

- Stationary distribution: a probability distribution $\vec{\pi}$ such that
- $\vec{\pi}=\vec{\pi} P$
- Question
- Does stationary distribution exist?
- If exists, is it unique?
- What can we do using stationary distribution?


## Fundamental Theorem of Markov Chain

Any finite, irreducible, and aperiodic Markov chain has the following properties:

- The chain has a unique stationary distribution $\pi=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{n}\right)$.
- For all $j$ and $i$, the limit $\lim _{t \rightarrow \infty} P_{i j}^{t}$ exists and it is independent of $j$.
- $\pi_{i}=\lim _{t \rightarrow \infty} P_{j i}^{t}=\frac{1}{h_{i i}}$


## Mixing Time <br> Important but difficult problems

- Sometimes asymptotic is not enough when designing algorithms
- $\epsilon$-mixing time:
- $\tau(\epsilon)=\min \left\{t: \forall p_{0} . d_{T V}\left(p_{t}, \pi\right) \leq \epsilon\right\}$
- Total variation distance: $d_{T V}(p, q)=\frac{1}{2}\|p-q\|_{1} \in[0,1]$
- Methods
- Probabilistic: coupling
- Algebraic: spectral analysis


## Random Walks on Undirected Graphs

## Overview

- We will see some interesting results without going into details
- And we will see an interesting algorithm


## Interesting Results

- Undirected graph $G=(V, E)$ with $V=\{0,1,2, \ldots, n-1\}$
- Transition matrix $P=D^{-1} A$

$$
D=\left(\begin{array}{cccc}
\vec{d}(0) & 0 & \ldots & 0 \\
0 & \vec{d}(1) & \ldots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \ldots & \vec{d}(n-1)
\end{array}\right)
$$

- $A$ is adjacency matrix, $\vec{d}$ is the degree vector


## Interesting Results

- Connected $\Leftrightarrow$ Irreducible
- Aperiodic $\Leftrightarrow$ Non-bipartite
- It is always positive recurrent

The fundamental theorem of Markov chain becomes

- For any finite, connected, non-bipartite graph

$$
p_{t} \rightarrow \vec{\pi}=\frac{\vec{d}}{2 m}
$$

## Interesting Results

- Bounding cover time
- The cover time of a connected graph is at most $2 m(n-1)$
- *Bounding mixing time
- $\tau(\epsilon) \leq \frac{1}{\lambda} \log \left(\frac{n}{\epsilon}\right)$, where spectral gap $\lambda=\min \left\{1-\alpha_{2}, 1-\left|\alpha_{n}\right|\right\}$
- $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n}$ is the eigenvalues of the transition matrix $P$


## Example: an s-t Connectivity Algorithm

- Given an undirected graph $G=(V, E)$ and two different vertices $s, t \in V$
- Determine if there is a path connecting $s$ and $t$
- What we have learned: BFS/DFS
- requires $\Omega(n)$ space
- Not possible when $n$ is too large


## Example: an s-t Connectivity Algorithm

$s-t$ Connectivity Algorithm:

1. Start a random walk from $s$.
2. If the walk reaches $t$ within $2 n^{3}$ steps, return that there is a path. Otherwise, return that there is no path.

Algorithm 7.4: $s-t$ Connectivity algorithm.

- Space complexity: $O(\log n)$
- $\operatorname{Pr}($ return not connected $\mid$ s-t is connected $) \leq \frac{1}{2}$
- By the upper bound on cover time
- Use union bound to bound the error rate


## Markov Chain Monte Carlo

## Sampling of Complex Objects

- Consider uniform distribution of the following objects
- These are easy to sample
- [n]
- $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 100\right\}$
- How about these?
- All independent sets in a graph $G$
- All $k$-colorings of a graph $G$


## Markov Chain Monte Carlo (MCMC)

- We want to sample a certain distinct distribution $p$
- We construct a Markov chain $\left\{X_{t}\right\}$ with a unique stationary distribution $p$
- We bound the $\tau(\epsilon)$ by finding a $T$ such that $T \geq \tau(\epsilon)$
- Then we sample $X_{T}, X_{2 T}, X_{3 T}, \ldots$
- How to construct?


## Markov Chain Monte Carlo (MCMC)

Lemma 11.7: For a finite state space $\Omega$ and neighborhood structure $\{N(X) \mid x \in \Omega\}$, let $N=\max _{x \in \Omega}|N(x)|$. Let $M$ be any number such that $M \geq N$. Consider a Markov chain where

$$
P_{x, y}= \begin{cases}1 / M & \text { if } x \neq y \text { and } y \in N(x), \\ 0 & \text { if } x \neq y \text { and } y \notin N(x), \\ 1-N(x) / M & \text { if } x=y .\end{cases}
$$

If this chain is irreducible and aperiodic, then the stationary distribution is the uniform distribution.

## Markov Chain Monte Carlo (MCMC)

Consider now the following simple Markov chain, whose states are independent sets in a graph $G=(V, E)$.

1. $X_{0}$ is an arbitrary independent set in $G$.
2. To compute $X_{i+1}$ :
(a) choose a vertex $v$ uniformly at random from $V$;
(b) if $v \in X_{i}$ then $X_{i+1}=X_{i} \backslash\{v\}$;
(c) if $v \notin X_{i}$ and if adding $v$ to $X_{i}$ still gives an independent set, then $X_{i+1}=$ $X_{i} \cup\{v\} ;$
(d) otherwise, $X_{i+1}=X_{i}$.
