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Basics of Markov Chain



Random Process

» A collection of random variable {X(?) : t € T}
* With time dimension

* Property
 Finite: dom(X) is finite
 Discrete time: t takes on countable value (WLOG, T'= {0,1,2,...})

 We only study finite and discrete time random process



Markov Chain

« Markov chain is a random process { X(#) : T € N} that
 Pr(iX. =a,|X,_=a,_,X,_,=4a, 5,....Xg=0ay) =Pr(X,=aq,|X,_; =a,_,)
» Memoryless or Markovian property

. We denote Pr(X, =a,|X,_ =a,_;) by P,

—1-Uy

 Which we call as transition probability



Example: The Gambler’s Ruin

e Initially you have $x,0 < x < n
e (Game rule:

e Toss a coin each time
 Win: add $1
e |Lose: lose $1

« When the game is over: you have $n or $0 (you lose all your money!)



Example: The Gambler’s Ruin

« X, money at time ¢

e Question:
o X() — X

. * Probability of win/lose”?
e 1 <j<n-1

 How many toss coins does it take?

. 1

o PI'(Xt=]+1‘Xt_1 =])=5
. 1

. PriX,=j-1|X_,=)) = 5

e« j=0o0rn

. Pr(X, = j|X,_, = j) =1



Transition Matrix

Poo Poy - Py,
Py Py ... Py

P=1:+ =+
Py P, .. P

l,]

 Why would we need it?



Transition Matrix

Pr(X, =) = Z Pr(X_, =i)-Pr(X, = j| X _, = i)

1=0
Pr(X, = 0) '
Let p, denote Pr(Xt:= D , we have p(J) = i pt_l(i)Pij
. Pr(Xt. = n) =
* Dy =D

® pt =p()Pt



Example: A 2-SAT Algorithm

SAT Problem
e 1 boolean variables: x, x5, ...,x, € {T, F'}
* Conjunctive Normal Form (CNF):
O=0xVXV)AX VXV ANV XV Xs5)
» k-CNF: each clause contains exactly variables
» k-SAT problem

e Given k-CNF formula @

e Determine whether @ is satisfiable



Example: A 2-SAT Algorithm

» #Possible assignment: 2"

* Are there fast algorithms??

2-SAT Algorithm:

. Start with an arbitrary truth assignment.
. Repeat up to 2mn? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that 1s not satisfied.

(b) Choose uniformly at random one of the literals in the clause and switch the
value of 1ts variable.
. If a valid truth assignment has been found, return it.
. Otherwise, return that the formula 1s unsatisfiable.

Algorithm 7.1: 2-SAT algorithm.



Example: A 2-SAT Algorithm

» We can view an assignment as a vectorv € {0,1}"
 5: target assignment which is satisfiable

» A assignment at step ¢

» X: the number of variables in A, that have the same value in §
- ie.n—||A, =S|,
- X, € {0,1,...,n}



Example: A 2-SAT Algorithm

e Other
.« Pr(X, =1|X_,=0)=1

e Pr(X. =n|X_,=n)=1



Example: A 2-SAT Algorithm

A Pessimistic Version

e Other
.« Pr(X, =1|X_,=0)=1

e Pr(X. =n|X_,=n)=1

e 1 <j<n-1

. Pr(Y,=j+1|Y_,=)) =

. Pr(Y,=j—-1]Y_,=))=
e Other
. Pr(Y,=1|Y_,=0)=1

e Pr(Y,=n|Y,_,=n)=1

1
2
1
2



Example: A 2-SAT Algorithm

e |t takes more time for Y to reach n than X

o ZJ the number of steps to reach n from state j of ¥

. h;: E[Z]

| | |
. Zj=5(Zj+1+1)+5(Zj_1+1),2§]§n—1

. Z =0



Example: A 2-SAT Algorithm

1

e Solve the recurrence

n—1
Chy= ) Qi+1)=n’
=0



Example: A 2-SAT Algorithm

e |t takes more time for Y to reach n than X

o ZJ the number of steps to reach n from state j of ¥

o hj — _[Z]]

n—1
hy = Z(2i+ 1) = n2
1=0

 The expected steps to find a satisfiable solution is bounded by n’



Long-term Behavior



Classification of States

 Communicate
* |rreducible
* Recurrence
* Aperiodic & Periodic
* Ergodic



Communication

« State j is accessible from state i: 1 — J

o EIn>().Pl.’fj>O

« State 1 and state j communicate: 1 < J

* A Markov chain is irreducible if all states belong to one communicating class

« Strongly Connected Graph



Recurrence

t m
. Let 7 denote the probability that

o starting at state 1, the first transition to state j occurs at time ¢

. i.e. r —Pr(X =jand,forl <s<r—1.X #j|Xy=1)

) A state is recurrent if Z rl. = |, and it is transient if Z v < 1

>1 >1

A Markov chain is recurrent if every state in the chain is recurrent



Example: The Gambler’s Ruin

e Initially you have $x,0 < x < n
e (Game rule:

e Toss a coin each time
 Win: add $1
e |Lose: lose $1

« When the game is over: you have $n or $0 (you lose all your money!)



Example: The Gambler’s Ruin

« X, money at time ¢

 What is the probability of winning and
+ Xp =X losing?

e 1 <j<n-1

. 1

o PI'(Xt=]+1‘Xt_1 =])=5
. 1

. PriX,=j-1|X_,=)) = 5

e« j=0o0rn

. Pr(X, = j|X,_, = j) =1



Example: The Gambler’s Ruin

e [ = 1.,2,....n — 1 are all transient states

. limp (i) =0

[— 00

. limp(n)=g¢q, Imp (0) =1-¢

[— 00 [— 00

n

CEX) = ) ip(i) =x

1=0

X
. IMEX) =ng=x = qg=—

[— 00 n




Periodicity

 Periodic: a state j is periodic if
e JA>1ls+tA—-PrX,=j|Xy;=j)=0
A Markov chain is periodic if any state in the chain is periodic

* A state or chain that is not periodic Is aperiodic



Stationary Distribution

» Stationary distribution: a probability distribution 7 such that

e 7 =P
e Question

* Does stationary distribution exist?
e |f exists, is it unique?

 What can we do using stationary distribution?



Fundamental Theorem of Markov Chain

Any finite, irreducible, and aperiodic Markov chain has the following properties:

» The chain has a unique stationary distribution 7 = (7, 7y, ..., 7).

. Foralljand i, the limit Iim P;i exists and it is independent of ;.
[— 0

1

p
[— 00 ii



Mixing Time
Important but difficult problems

 Sometimes asymptotic is not enough when designing algorithms
e €-mixing time:

» 7(€) = min{t: Vp,.d(p,x) < €}

1
. Total variation distance: d;/(p, q) = EHP —4q|l, € [0,1]

 Methods
* Probabillistic: coupling

* Algebraic: spectral analysis



Random Walks on Undirected Graphs




Overview

* We will see some interesting results without going into details

 And we will see an interesting algorithm



Interesting Results

» Undirected graph G = (V, E) with V = {0,1,2,....,.n — 1}

o Transition matrix P = DA

doy 0 ... 0
H_| 0 dn .. 0
: . 0

0 0 .. dn-1

» A is adjacency matrix, d is the degree vector



Interesting Results

e Connected < Irreducible

e Aperiodic < Non-bipartite
* |t is always positive recurrent
The fundamental theorem of Markov chain becomes

* For any finite, connected, non-bipartite graph

d
- T = —
Ps .



Interesting Results

 Bounding cover time

» The cover time of a connected graph is at most 2m(n — 1)

 "Bounding mixing time

. 7(6) < I log(ﬁ), where spectral gap 4 = min{1 — a,,1 — |, | }
€

c a; =y, > ... 2 @, is the eigenvalues of the transition matrix P



Example: an s-t Connectivity Algorithm

 Given an undirected graph G = (V, E) and two different vertices s, 1 € V

e Determine if there is a path connecting s and ¢

 What we have learned: BFS/DFS
 requires £2(n) space

 Not possible when n Is too large



Example: an s-t Connectivity Algorithm

s— Connectivity Algorithm:

1. Start a random walk from s.

2. If the walk reaches ¢ within 2n° steps, return that there is a path. Otherwise,
return that there 1s no path.

Algorithm 7.4: s—t Connectivity algorithm.

» Space complexity: O(log n)
|

. Pr(return not connected | s-t is connected) < —

2

By the upper bound on cover time

e Use union bound to bound the error rate



Markov Chain Monte Carlo




Sampling of Complex Objects

» Consider uniform distribution of the following objects

 These are easy to sample

- |n]
+ {6y, 2127 +y* + 22 <100}

 How about these?
 All independent sets in a graph G

o All k-colorings of a graph G



Markov Chain Monte Carlo (MCMC)

* We want to sample a certain distinct distribution p

» We construct a Markov chain { X} with a unique stationary distribution p

« We bound the 7(€) by finding a 7" such that 7" > 7(¢)

» Then we sample X+, Xo7, X537, ...

e How to construct?



Markov Chain Monte Carlo (MCMC)

Lemma 11.7: For a finite state space €2 and neighborhood structure {N(X) | x € 2},
let N = max,cq |[N(x)|. Let M be any number such that M > N. Consider a Markov
chain where

1/ M ifx#Ayandy € N(x),

P,y =10 ifx #yandy ¢ N(x),
1 —-NXx)/M ifx=y.

If this chain is irreducible and aperiodic, then the stationary distribution is the uniform
distribution.



Markov Chain Monte Carlo (MCMC)

Consider now the following simple Markov chain, whose states are independent sets
in a graph G = (V, E).

1. X, 1s an arbitrary independent set in G.
2. To compute X, 1:
(a) choose a vertex v uniformly at random from V;
(b) ifv e X;then X, 1 =X; \ {v};
(¢) if v ¢ X; and if adding v to X; still gives an independent set, then X;,; =
X; U {v};
(d) otherwise, X;11 = X,.



