### **Probability and Statistics** Introduction to Markov Chain

#### 谢润烁 Nanjing University, 2023 Fall



**Basics of Markov Chain** 

#### **Random Process**

- A collection of random variable  $\{X(t) : t \in T\}$ 
  - With **time** dimension
- Property
  - Finite: dom(X) is finite
  - Discrete time: t takes on countable value (WLOG,  $T = \{0, 1, 2, ...\}$ )
- We only study finite and discrete time random process

### Markov Chain

•

Markov chain is a random process 
$$\{X(t) : T \in \mathbb{N}\}$$
 that  
•  $\Pr(X_t = a_t | X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \dots, X_0 = a_0) = \Pr(X_t = a_t | X_{t-1} = a_t)$   
• *Memoryless* or *Markovian* property

- We denote  $Pr(X_t = a_t | X_{t-1} = a_t)$ 
  - Which we call as transition probability

$$P_{a_{t-1}}$$
) by  $P_{a_{t-1},a_t}$ 



- Initially you have x, 0 < x < n
- Game rule:
  - Toss a coin each time
    - Win: add \$1
    - Lose: lose \$1

• When the game is over: you have n or 0 (you lose all your money!)

•  $X_t$ : money at time t

• 
$$X_0 = x$$

• 
$$1 \leq j \leq n-1$$

• 
$$\Pr(X_t = j + 1 | X_{t-1} = j) = \frac{1}{2}$$

• 
$$\Pr(X_t = j - 1 | X_{t-1} = j) = \frac{1}{2}$$

• j = 0 or n

•  $\Pr(X_t = j | X_{t-1} = j) = 1$ 

- Question:
  - Probability of win/lose?
  - How many toss coins does it take?



#### **Transition Matrix**

$$P = \begin{pmatrix} P_{0,0} & P_{0,1} \\ P_{1,0} & P_{1,1} \\ \vdots & \vdots \\ P_{i,0} & P_{i,1} \\ \vdots & \vdots \end{pmatrix}$$

Why would we need it?

#### **Transition Matrix**

• 
$$\Pr(X_t = j) = \sum_{i=0}^{n} \Pr(X_{t-1} = i) \cdot \Pr(X_t = j | X_{t-1} = i)$$
  
• 
$$\operatorname{Let} p_t \text{ denote} \begin{bmatrix} \Pr(X_t = 0) \\ \Pr(X_t = 1) \\ \vdots \\ \Pr(X_t = n) \end{bmatrix}^T, \text{ we have } p_t(j) = \sum_{i=0}^{n} p_{t-1}(i) P_{ij}$$

• 
$$p_t = p_{t-1}P$$

•  $p_t = p_0 P^t$ 

$$P = \begin{pmatrix} P_{0,0} & P_{0,1} & \dots & P_{0,j} \\ P_{1,0} & P_{1,1} & \dots & P_{1,j} \\ \vdots & \vdots & \ddots & \vdots \\ P_{i,0} & P_{i,1} & \dots & P_{i,j} \\ \vdots & \vdots & \ddots & \vdots \\ \end{pmatrix}$$
$$= j | X_{t-1} = i)$$



#### **Example: A 2-SAT Algorithm SAT Problem**

- *n* boolean variables:  $x_1, x_2, ..., x_n \in \{T, F\}$
- Conjunctive Normal Form (CNF):

$$\Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3)$$

- k-CNF: each clause contains exactly variables
- *k*-SAT problem
  - Given k-CNF formula  $\Phi$
  - Determine whether  $\Phi$  is satisfiable

 $(x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$ 

- **#Possible assignment:**  $2^n$
- Are there fast algorithms?

#### **2-SAT Algorithm:**

- **1.** Start with an arbitrary truth assignment.
- 2. Repeat up to  $2mn^2$  times, terminating if all clauses are satisfied: (a) Choose an arbitrary clause that is not satisfied.
  - value of its variable.
- **3.** If a valid truth assignment has been found, return it.
- 4. Otherwise, return that the formula is unsatisfiable.

(b) Choose uniformly at random one of the literals in the clause and switch the

**Algorithm 7.1:** 2-SAT algorithm.

- We can view an assignment as a vector  $v \in \{0,1\}^n$
- S: target assignment which is satisfiable
- $A_t$ : assignment at step t
- $X_t$ : the number of variables in  $A_t$  that have the same value in S
  - i.e.  $n ||A_t S||_1$
  - $X_t \in \{0, 1, ..., n\}$

# • $1 \le j \le n - 1$ • $\Pr(X_t = j + 1 | X_{t-1} = j) \ge \frac{1}{2}$ • $\Pr(X_t = j - 1 | X_{t-1} = j) \le \frac{1}{2}$

- Other
  - $\Pr(X_t = 1 | X_{t-1} = 0) = 1$
  - $\Pr(X_t = n | X_{t-1} = n) = 1$

#### **Example: A 2-SAT Algorithm** A Pessimistic Version

• 
$$1 \le j \le n - 1$$
  
•  $\Pr(X_t = j + 1 | X_{t-1} = j) \ge \frac{1}{2}$   
•  $\Pr(X_t = j - 1 | X_{t-1} = j) \le \frac{1}{2}$ 

- Other
  - $\Pr(X_t = 1 | X_{t-1} = 0) = 1$
  - $\Pr(X_t = n | X_{t-1} = n) = 1$

• 
$$1 \le j \le n - 1$$
  
•  $\Pr(Y_t = j + 1 \mid Y_{t-1} = j) = \frac{1}{2}$   
•  $\Pr(Y_t = j - 1 \mid Y_{t-1} = j) = \frac{1}{2}$ 

- Other
  - $\Pr(Y_t = 1 \mid Y_{t-1} = 0) = 1$
  - $\Pr(Y_t = n \mid Y_{t-1} = n) = 1$

- It takes more time for Y to reach n than X
- $Z_j$ : the number of steps to reach n from state j of Y
- $h_j: \mathbb{E}[Z_j]$ 
  - $Z_j = \frac{1}{2}(Z_{j+1} + 1) + \frac{1}{2}(Z_{j-1} + 1), 2 \le j \le n 1$
  - $Z_n = 0$
  - $Z_0 = Z_1 + 1$

• 
$$h_j = \frac{1}{2}(h_{j+1} + h_{j-1}) + 1$$

• 
$$h_n = 0, h_0 = h_1 + 1$$

• Solve the recurrence

• 
$$h_j = h_{j+1} + 2j + 1$$
  
•  $h_0 = \sum_{i=0}^{n-1} (2i+1) = n^2$ 

- It takes more time for Y to reach n than X
- $Z_i$ : the number of steps to reach *n* from state *j* of *Y*
- $h_i = \mathbb{E}[Z_i]$

• 
$$h_0 = \sum_{i=0}^{n-1} (2i+1) = n^2$$

• The expected steps to find a satisfiable solution is bounded by  $n^2$ 

Long-term Behavior

#### **Classification of States**

- Communicate
  - Irreducible
- Recurrence
- Aperiodic & Periodic
- Ergodic

#### Communication

- State *j* is **accessible** from state  $i: i \rightarrow j$ 
  - $\exists n > 0. P_{i,i}^n > 0$
- State *i* and state *j* communicate:  $i \leftrightarrow j$
- - Strongly Connected Graph

A Markov chain is irreducible if all states belong to one communicating class

#### Recurrence

- Let  $r_{i,j}^t$  denote the probability that
  - starting at state *i*, the first transition to state *j* occurs at time *t*

• i.e. 
$$r_{i,j}^t = \Pr(X_t = j \text{ and, for } 1 \le s \le t - 1, X_s \ne j | X_0 = i)$$
  
A state is **recurrent** if  $\sum_{t \ge 1} r_{i,i}^t = 1$ , and it is **transient** if  $\sum_{t \ge 1} r_{i,i}^t < 1$ 

A Markov chain is recurrent if every state in the chain is recurrent

- Initially you have x, 0 < x < n
- Game rule:
  - Toss a coin each time
    - Win: add \$1
    - Lose: lose \$1

• When the game is over: you have n or 0 (you lose all your money!)

•  $X_t$ : money at time t

• 
$$X_0 = x$$

• 
$$1 \leq j \leq n-1$$

• 
$$\Pr(X_t = j + 1 | X_{t-1} = j) = \frac{1}{2}$$

• 
$$\Pr(X_t = j - 1 | X_{t-1} = j) = \frac{1}{2}$$

• j = 0 or n

•  $\Pr(X_t = j | X_{t-1} = j) = 1$ 

 What is the probability of winning and losing?



- i = 1, 2, ..., n 1 are all transient states
  - $\lim p_t(i) = 0$  $t \rightarrow \infty$
  - $\lim_{t \to \infty} p_t(n) = q, \lim_{t \to \infty} p_t(0) = 1 q$

$$\mathbb{E}(X_t) = \sum_{i=0}^n ip_t(i) = x$$

X •  $\lim \mathbb{E}(X_t) = nq = x \Rightarrow q =$  $t \rightarrow \infty$ n

#### Periodicity

- Periodic: a state *j* is periodic if
  - $\exists \Delta > 1.s \nmid \Delta \rightarrow \Pr(X_t = j \mid X_0 = j) = 0$
- A Markov chain is **periodic** if any state in the chain is **periodic**
- A state or chain that is not periodic is **aperiodic**

### **Stationary Distribution**

- Stationary distribution: a probability distribution  $\vec{\pi}$  such that
  - $\vec{\pi} = \vec{\pi}P$
- Question
  - Does stationary distribution exist?
  - If exists, is it unique?
  - What can we do using stationary distribution?

### **Fundamental Theorem of Markov Chain**

- The chain has a unique stationary distribution  $\pi = (\pi_0, \pi_1, \dots, \pi_n)$ .
- For all j and i, the limit  $\lim_{t \to \infty} P_{ij}^t$  exists and it is independent of j.

• 
$$\pi_i = \lim_{t \to \infty} P_{ji}^t = \frac{1}{h_{ii}}$$

Any finite, irreducible, and aperiodic Markov chain has the following properties:

#### **Mixing Time** Important but difficult problems

- Sometimes asymptotic is not enough when designing algorithms
- $\epsilon$ -mixing time:
  - $\tau(\epsilon) = \min\{t : \forall p_0 . d_{TV}(p_t, \pi) \le \epsilon\}$
- Methods
  - Probabilistic: coupling
  - Algebraic: spectral analysis



**Random Walks on Undirected Graphs** 



#### Overview

- We will see some interesting results without going into details
- And we will see an interesting algorithm

### Interesting Results

- Undirected graph G = (V, E) with  $V = \{0, 1, 2, ..., n 1\}$
- Transition matrix  $P = D^{-1}A$

• A is adjacency matrix, d is the degree vector



### Interesting Results

- Connected ⇔ Irreducible
- Aperiodic ⇔ Non-bipartite
- It is always positive recurrent

The fundamental theorem of Markov chain becomes

• For any finite, connected, non-bipartite graph

 $p_t \rightarrow$ 

$$\vec{\pi} = \frac{\vec{d}}{2m}$$

### Interesting Results

- Bounding cover time
  - The cover time of a connected graph is at most 2m(n-1)
- \*Bounding mixing time

• 
$$\tau(\epsilon) \leq \frac{1}{\lambda} \log(\frac{n}{\epsilon})$$
, where **spectra**

•  $\alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_n$  is the eigenvalues of the transition matrix P

#### al gap $\lambda = \min\{1 - \alpha_2, 1 - |\alpha_n|\}$

### **Example: an s-t Connectivity Algorithm**

- Determine if there is a path connecting s and t
- What we have learned: BFS/DFS
  - requires  $\Omega(n)$  space
  - Not possible when *n* is too large

• Given an undirected graph G = (V, E) and two different vertices  $s, t \in V$ 

## **Example: an s-t Connectivity Algorithm**

#### *s*–*t* Connectivity Algorithm:

- **1.** Start a random walk from *s*.
- 2. If the walk reaches t within  $2n^3$  steps, return that there is a path. Otherwise, return that there is no path.

**Algorithm 7.4:** *s*–*t* Connectivity algorithm.

- Space complexity:  $O(\log n)$
- Pr(return not connected | s-t is connected)  $\leq \frac{1}{2}$ 
  - By the upper bound on cover time
- Use **union bound** to bound the error rate

# Markov Chain Monte Carlo

## **Sampling of Complex Objects**

- Consider uniform distribution of the following objects
- These are easy to sample
  - *n*
  - { $(x, y, z) | x^2 + y^2 + z^2 \le 100$  }
- How about these?
  - All independent sets in a graph G
  - All k-colorings of a graph G



### Markov Chain Monte Carlo (MCMC)

- We want to sample a certain distinct distribution p
- We construct a Markov chain  $\{X_t\}$  with a unique stationary distribution p
- We bound the  $\tau(\epsilon)$  by finding a T such that  $T \ge \tau(\epsilon)$
- Then we sample  $X_T, X_{2T}, X_{3T}, \ldots$
- How to construct?

### Markov Chain Monte Carlo (MCMC)

**Lemma 11.7:** For a finite state space  $\Omega$  and neighborhood structure  $\{N(X) \mid x \in \Omega\}$ , let  $N = \max_{x \in \Omega} |N(x)|$ . Let M be any number such that  $M \ge N$ . Consider a Markov chain where

$$P_{x,y} = \begin{cases} 1/M & \text{if} \\ 0 & \text{if} \\ 1 - N(x)/M & \text{if} \end{cases}$$

If this chain is irreducible and aperiodic, then the stationary distribution is the uniform distribution.

```
f x \neq y \text{ and } y \in N(x),
fx \neq y \text{ and } y \notin N(x),
x = y.
```

## Markov Chain Monte Carlo (MCMC)

Consider now the following simple Markov chain, whose states are independent sets in a graph G = (V, E).

- **1.**  $X_0$  is an arbitrary independent set in G.
- **2.** To compute  $X_{i+1}$ :
  - (a) choose a vertex v uniformly at random from V;
  - (b) if  $v \in X_i$  then  $X_{i+1} = X_i \setminus \{v\}$ ;
  - (c) if  $v \notin X_i$  and if adding v to  $X_i$  still gives an independent set, then  $X_{i+1} =$  $X_i \cup \{v\};$
  - (d) otherwise,  $X_{i+1} = X_i$ .