
谢润烁  Nanjing University, 2023 Fall

Probability and Statistics
Introduction to Markov Chain

1



Basics of Markov Chain



Random Process

• A collection of random variable  

• With time dimension


• Property


• Finite:  is finite


• Discrete time:  takes on countable value (WLOG, )


• We only study finite and discrete time random process

{X(t) : t ∈ T}

dom(X)

t T = {0,1,2,…}



Markov Chain

• Markov chain is a random process  that


• 


• Memoryless or Markovian property


• We denote  by 


• Which we call as transition probability

{X(t) : T ∈ ℕ}

Pr(Xt = at |Xt−1 = at−1, Xt−2 = at−2, …, X0 = a0) = Pr(Xt = at |Xt−1 = at−1)

Pr(Xt = at |Xt−1 = at−1) Pat−1,at



Example: The Gambler’s Ruin

• Initially you have $ , 


• Game rule:


• Toss a coin each time


• Win: add $ 


• Lose: lose $ 


• When the game is over: you have $  or $  (you lose all your money!)

x 0 < x < n

1

1

n 0



Example: The Gambler’s Ruin

• : money at time 


• 


• 


• 


• 


• 


•

Xt t

X0 = x

1 ≤ j ≤ n − 1

Pr(Xt = j + 1 |Xt−1 = j) =
1
2

Pr(Xt = j − 1 |Xt−1 = j) =
1
2

j = 0 or n

Pr(Xt = j |Xt−1 = j) = 1

• Question: 


• Probability of win/lose?


• How many toss coins does it take?



Transition Matrix




• Why would we need it?

P =

P0,0 P0,1 … P0,j …
P1,0 P1,1 … P1,j …
⋮ ⋮ ⋱ ⋮ ⋮

Pi,0 Pi,1 … Pi,j …
⋮ ⋮ ⋱ ⋮ ⋮



Transition Matrix

• 


•
Let  denote , we have 


• 


•

Pr(Xt = j) =
n

∑
i=0

Pr(Xt−1 = i) ⋅ Pr(Xt = j |Xt−1 = i)

pt

Pr(Xt = 0)
Pr(Xt = 1)

⋮
Pr(Xt = n)

T

pt( j) =
n

∑
i=0

pt−1(i)Pij

pt = pt−1P

pt = p0Pt

P =

P0,0 P0,1 … P0,j …
P1,0 P1,1 … P1,j …
⋮ ⋮ ⋱ ⋮ ⋮

Pi,0 Pi,1 … Pi,j …
⋮ ⋮ ⋱ ⋮ ⋮



Example: A 2-SAT Algorithm
SAT Problem

•  boolean variables: 


• Conjunctive Normal Form (CNF):





• -CNF: each clause contains exactly variables


• -SAT problem


• Given -CNF formula 


• Determine whether  is satisfiable

n x1, x2, …, xn ∈ {T, F}

Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

k

k

k Φ

Φ



Example: A 2-SAT Algorithm

• #Possible assignment: 


• Are there fast algorithms?

2n



Example: A 2-SAT Algorithm

• We can view an assignment as a vector 


• : target assignment which is satisfiable


• : assignment at step 


• : the number of variables in  that have the same value in 


• i.e. 


•

v ∈ {0,1}n

S

At t

Xt At S

n − ∥At − S∥1

Xt ∈ {0,1,…, n}



Example: A 2-SAT Algorithm

• 


• 


• 


• Other


• 


•

1 ≤ j ≤ n − 1

Pr(Xt = j + 1 |Xt−1 = j) ≥
1
2

Pr(Xt = j − 1 |Xt−1 = j) ≤
1
2

Pr(Xt = 1 |Xt−1 = 0) = 1

Pr(Xt = n |Xt−1 = n) = 1



Example: A 2-SAT Algorithm
A Pessimistic Version

• 


• 


• 


• Other


• 


•

1 ≤ j ≤ n − 1

Pr(Xt = j + 1 |Xt−1 = j) ≥
1
2

Pr(Xt = j − 1 |Xt−1 = j) ≤
1
2

Pr(Xt = 1 |Xt−1 = 0) = 1

Pr(Xt = n |Xt−1 = n) = 1

• 


• 


• 


• Other


• 


•

1 ≤ j ≤ n − 1

Pr(Yt = j + 1 |Yt−1 = j) =
1
2

Pr(Yt = j − 1 |Yt−1 = j) =
1
2

Pr(Yt = 1 |Yt−1 = 0) = 1

Pr(Yt = n |Yt−1 = n) = 1



Example: A 2-SAT Algorithm

• It takes more time for  to reach  than 


• : the number of steps to reach  from state  of 


• : 


• , 


• 


•

Y n X

Zj n j Y

hj 𝔼[Zj]

Zj =
1
2

(Zj+1 + 1) +
1
2

(Zj−1 + 1) 2 ≤ j ≤ n − 1

Zn = 0

Z0 = Z1 + 1



Example: A 2-SAT Algorithm

• 


• , 


• Solve the recurrence


• 


•

hj =
1
2

(hj+1 + hj−1) + 1

hn = 0 h0 = h1 + 1

hj = hj+1 + 2j + 1

h0 =
n−1

∑
i=0

(2i + 1) = n2



Example: A 2-SAT Algorithm

• It takes more time for  to reach  than 


• : the number of steps to reach  from state  of 


• 


• 


• The expected steps to find a satisfiable solution is bounded by 

Y n X

Zj n j Y

hj = 𝔼[Zj]

h0 =
n−1

∑
i=0

(2i + 1) = n2

n2



Long-term Behavior



Classification of States

• Communicate


• Irreducible


• Recurrence


• Aperiodic & Periodic


• Ergodic



Communication

• State  is accessible from state : 


• 


• State  and state  communicate: 


• A Markov chain is irreducible if all states belong to one communicating class


• Strongly Connected Graph

j i i → j

∃n > 0. Pn
i,j > 0

i j i ↔ j



Recurrence

• Let  denote the probability that


• starting at state , the first transition to state  occurs at time 


• i.e. 


• A state is recurrent if , and it is transient if 


• A Markov chain is recurrent if every state in the chain is recurrent

rt
i,j

i j t

rt
i,j = Pr(Xt = j and, for 1 ≤ s ≤ t − 1,Xs ≠ j |X0 = i)

∑
t≥1

rt
i,i = 1 ∑

t≥1

rt
i,i < 1



Example: The Gambler’s Ruin

• Initially you have $ , 


• Game rule:


• Toss a coin each time


• Win: add $ 


• Lose: lose $ 


• When the game is over: you have $  or $  (you lose all your money!)

x 0 < x < n

1

1

n 0



Example: The Gambler’s Ruin

• : money at time 


• 


• 


• 


• 


• 


•

Xt t

X0 = x

1 ≤ j ≤ n − 1

Pr(Xt = j + 1 |Xt−1 = j) =
1
2

Pr(Xt = j − 1 |Xt−1 = j) =
1
2

j = 0 or n

Pr(Xt = j |Xt−1 = j) = 1

• What is the probability of winning and 
losing?



Example: The Gambler’s Ruin

•  are all transient states


• 


• , 


• 


•    

i = 1,2,…, n − 1

lim
t→∞

pt(i) = 0

lim
t→∞

pt(n) = q lim
t→∞

pt(0) = 1 − q

𝔼(Xt) =
n

∑
i=0

ipt(i) = x

lim
t→∞

𝔼(Xt) = nq = x ⇒ q =
x
n



Periodicity

• Periodic: a state  is periodic if


• 


• A Markov chain is periodic if any state in the chain is periodic


• A state or chain that is not periodic is aperiodic

j

∃Δ > 1.s ∤ Δ → Pr(Xt = j |X0 = j) = 0



Stationary Distribution

• Stationary distribution: a probability distribution  such that


• 


• Question


• Does stationary distribution exist?


• If exists, is it unique?


• What can we do using stationary distribution?

⃗π

⃗π = ⃗πP



Fundamental Theorem of Markov Chain

Any finite, irreducible, and aperiodic Markov chain has the following properties:


• The chain has a unique stationary distribution .


• For all  and , the limit  exists and it is independent of .


•

π = (π0, π1, …, πn)

j i lim
t→∞

Pt
ij j

πi = lim
t→∞

Pt
ji =

1
hii



Mixing Time
Important but difficult problems

• Sometimes asymptotic is not enough when designing algorithms


• -mixing time: 


• 


• Total variation distance: 


• Methods


• Probabilistic: coupling


• Algebraic: spectral analysis

ϵ

τ(ϵ) = min{t : ∀p0 . dTV(pt, π) ≤ ϵ}

dTV(p, q) =
1
2

∥p − q∥1 ∈ [0,1]



Random Walks on Undirected Graphs



Overview

• We will see some interesting results without going into details


• And we will see an interesting algorithm 



Interesting Results

• Undirected graph  with 


• Transition matrix 





•  is adjacency matrix,  is the degree vector

G = (V, E) V = {0,1,2,…, n − 1}

P = D−1A

D =

⃗d(0) 0 … 0

0 ⃗d(1) … 0
⋮ ⋮ ⋱ 0
0 0 … ⃗d(n − 1)

A ⃗d



Interesting Results

• Connected  Irreducible


• Aperiodic  Non-bipartite


• It is always positive recurrent


The fundamental theorem of Markov chain becomes


• For any finite, connected, non-bipartite graph


⇔

⇔

pt → ⃗π =
⃗d

2m



Interesting Results

• Bounding cover time


• The cover time of a connected graph is at most 


• *Bounding mixing time


• , where spectral gap 


•  is the eigenvalues of the transition matrix 

2m(n − 1)

τ(ϵ) ≤
1
λ

log(
n
ϵ

) λ = min{1 − α2,1 − |αn |}

α1 ≥ α2 ≥ … ≥ αn P



Example: an s–t Connectivity Algorithm 

• Given an undirected graph  and two different vertices 


• Determine if there is a path connecting  and 


• What we have learned: BFS/DFS


• requires  space


• Not possible when  is too large

G = (V, E) s, t ∈ V

s t

Ω(n)

n



Example: an s–t Connectivity Algorithm 

• Space complexity: 


• 


• By the upper bound on cover time


• Use union bound to bound the error rate

O(log n)

Pr(return not connected | s-t is connected) ≤
1
2



Markov Chain Monte Carlo



Sampling of Complex Objects

• Consider uniform distribution of the following objects


• These are easy to sample


• 


• 


• How about these?


• All independent sets in a graph 


• All -colorings of a graph 

[n]

{(x, y, z) |x2 + y2 + z2 ≤ 100}

G

k G



Markov Chain Monte Carlo (MCMC)

• We want to sample a certain distinct distribution 


• We construct a Markov chain  with a unique stationary distribution 


• We bound the  by finding a  such that 


• Then we sample 


• How to construct?

p

{Xt} p

τ(ϵ) T T ≥ τ(ϵ)

XT, X2T, X3T, …



Markov Chain Monte Carlo (MCMC)



Markov Chain Monte Carlo (MCMC)


