Prerequisite for L2

谢润烁 2023/10/10

1 Notation

Notation	Meaning
A	a set
Ω	sample space (the universe)
$A\setminus B$	$\{x: x \in A \land x \notin B\}$
A^c	the compliment of $A, \ i.e., \ \Omega \setminus A$
Σ	the set of events
${\cal F}$	a collection of set / a set family
\Pr	the probability measure

2 Definition

The occurrence or non-occurrence of a random event depends upon the chain of circumstances involved, which is called an **experiment** or **trial**; the result of an experiment is called its **outcome**.

Definition (Sample Space):

The set of all possible outcomes of an experiment is called the **sample space** and is denoted by Ω .

Definition (σ -field/ σ -algebra):

A collection \mathcal{F} of subsets of Ω is called a σ -field if it satisfies the following conditions:

- 1. $\emptyset \in \mathcal{F}$
- 2. If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=0}^{\infty} A_i \in \mathcal{F}$
- 3. if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$

We think of *events* as subsets of the sample space Ω . We require the set of events Σ is a σ -field.

Events A and B are called **disjoint** if their intersection is the empty set \emptyset ;

- \emptyset is called the **impossible event**.
- The set Ω called the **certain event**.

Note

The power set of Ω , which is written 2^{Ω} , is obviously a σ -field. However, when Ω is infinite, its power set is too large a collection for probabilities to be assigned reasonably to all its members.

Definition (Probability Measure):

A probability measure Pr on (Ω, Σ) is a function $Pr: \Sigma \to [0, 1]$ satisfying

- 1. $P(\emptyset) = 0, P(\Omega) = 1.$
- 2. if A_1, A_2, \ldots is a collection of disjoint members of Σ , in that $A_i \cap A_j = \emptyset$ for all pairs i, j satisfying $i \neq j$, then

$$\Pr\left(igcup_{i=1}^\infty A_i
ight) = \sum_{i=1}^\infty \Pr(A_i)$$

An event A is called **null** if Pr(A) = 0. If Pr(A) = 1, we say that A occurs **almost surely**.

Definition (Probability Space):

The triple (Ω, Σ, \Pr) , comprising a set Ω , a σ -field Σ of subsets of Ω , and a probability measure \Pr on (Ω, Σ) , is called a **probability space**.

Definition (Conditional Probability of Event)

If Pr(B) > 0 then the conditional probability that A occurs given that B occurs is defined to

$$\Pr(A \mid B) = rac{\Pr(A \cap B)}{\Pr(B)}$$

pronounced 'the probability of A given B', or sometimes 'the probability of A conditioned (or conditional) on B'.

Definition (Independence of Events)

Events A and B are called **independent** if

$$\Pr(A \cap B) = \Pr(A) \Pr(B)$$

More generally, a family $\{A_i : i \in I\}$ is called **independent** if

$$\Pr\left(igcap_{i\in J}A_i
ight) = \prod_{i\in J}\Pr(A_i)$$

for any *finite* subsets J of I.

A family $\{A_i : i \in I\}$ is called *k*-wise independent if

$$\Pr\left(igcap_{i\in J}A_i
ight) = \prod_{i\in J}\Pr(A_i)$$

for any *finite* subsets J of I such that |J| = k. 2-wise independent is also called **pairwise independent**.

Definition (Random Variable)

A random variable is a function $X : \Omega \to \mathbb{R}$ with the property that $\{\omega \in \Omega : X(\omega) \in \Sigma\}$ for each $x \in \mathbb{R}$. Such a function is said to be Σ -measurable.

3 Theorem

Basic Lemma derived from Axioms

- 1. $\Pr(A^c) = 1 \Pr(A)$
- 2. If $A \subseteq B$ then $\Pr(B) \ge \Pr(A)$
- 3. $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$
- 4. (Inclusion-Exclusion Principle / Poincaré's Formula)

$$\Pr\left(igcup_{i=1}^n A_i
ight) = \sum_{I\subseteq\{1,\ldots,n\}} (-1)^{|I|-1} \Pr\left(igcup_{i\in I} A_i
ight).$$

Theorem (Law of Total Probability)

let B_1, B_2, \ldots, B_n be a partition of Ω such that $Pr(B_i) > 0$ for all *i*. Then

$$\Pr(A) = \sum_{i=1}^n \Pr(A \mid B_i) \Pr(B_i)$$

Theorem (Boole's Inequalities / Union Bounds)

$$\Pr\!\left(igcup_{i=1}^n A_i
ight) \leq \sum_{i=1}^n \Pr(A_i)$$

Theorem (Bayes's Formula)

$$\Pr(A \mid B) = rac{\Pr(B \mid A) \Pr(A)}{\Pr(B)}$$